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Abstract

In this thesis, the speed and scalability of previous neural style transfer (NST) techniques for
smoke are enhanced by training a feed-forward convolutional neural network (CNN) for styliz-
ing smoke simulations. The feed-forward solution follows a patch-based method that considers
spatial coherence of density fields while showcasing superior inherent temporal coherence com-
pared to previous iterative NST techniques. Training in 3D space is possible by combining the
CNN with advection and rendering differentiable modules.
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Zusammenfassung

In dieser Arbeit werden die Geschwindigkeit und Skalierbarkeit früherer NST-Techniken (Neu-
ral Style Transfer) für Rauch verbessert, indem ein Feed-Forward-Convolutional Neural Net-
work (CNN) zur Stilisierung von Rauchsimulationen trainiert wird. Die Feed-Forward-Lösung
folgt einer Patch-basierten Methode, die räumliche Kohärenz von Dichtefeldern berücksichtigt
und gleichzeitig im Vergleich zu früheren iterativen NST-Techniken eine verbesserte zeitliche
Kohärenz aufweist. Das Training im 3D-Raum wird ermöglicht, indem das CNN mit Advektion
kombiniert und differenzierbare Ansichten gerendert werden.
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1
Introduction

Artistically controlling fluids has always been a challenging task. Optimization techniques rely
on approximating simulation states towards target velocity or density field configurations, which
were mostly handcrafted by artists to indirectly control smoke dynamics. Recently, Neural Style
Transfer (NST) techniques were used to artistically manipulate smoke simulation data. In this
thesis, our goal is to enhance previous NST techniques for smoke by training a feed-forward
convolutional neural network for stylizing smoke simulations much faster. The network has to
adapt previous image-based 2-D solutions to consider 3-D density fields while considering the
time-coherency that underlies the physical phenomena. The stylization can be used to enhance
a dull low resolution volume with stylized details. We believe that a patch-based approach is
key to generalizing Deep Convolutional Architectures for volumetric 3-D data for this reason
we also explore a simple tiling method based on overlaps. Additionally, we explore architecture
designs to compute stylization velocities in a multi-scale fashion, which could enable long-
range correspondencies on the original style to be transferred to the target volumetric smoke.

Neural Style Transfer (NST) is a popular technique for artistically stylizing an image while
keeping its original content. It computes styles by filter activations of pre-trained Deep Convo-
lutional Neural Networks (CNNs) used for image classification, providing a rich range of styles
that can model both artistic [GEB16] and photo-realistic [LPSB17, MSZM17] style transfer.
Transport-based Neural Style Transfer (TNST) [KAGS19] extends image-based NST by indi-
rectly manipulating fluid data through stylization velocity fields. The stylization velocity fields
are optimized by minimizing differences between filters activations of a given target style and
the style of a rendered smoke frame. Given an specified camera viewpoint, a differentiable vol-
umetric renderer automatically enables the transferring of gradients computed in image-space
to volumetric data. Temporary-coherent smoke stylizations are obtained by subsequently align-
ing and smoothing stylization velocity fields using the original simulation velocities. Their
approach supports an unprecedented wide range of styles obtained from single 2-D images,
ranging from simple artistic patterns to intricate real-images motifs.

1



1. Introduction

However, the energy minimization solved by the Transport-Based Neural Style transfer is com-
putationally expensive, taking up to 20 minutes per frame for a 3-D setup. Thus, in this work, we
improve the efficiency of TNST by training a Deep Convolutional Neural Network. Our network
takes as an input a patch of a smoke and outputs a velocity field that stylizes this patch given
a predefined style. The patch-based approach allows our method to support general scenes, as
we carefully choose a training data-set that has increased variability while also providing data
augmentation in training time for better generalization. Subsequent patches have overlapping
regions, which are combined together to produce seamless stylizations that are up to 2 orders
of magnitude faster than the previous approach. Besides being computationally efficient, our
Deep CNN patch-based approach allows stylization of arbitrarily large simulations on without
exceeding a memory budget, making our method useful for production pipelines. Lastly, we
benefit from the natural smoothness present on generative Deep CNNs to output an stylization
that covers all smoke viewpoints with a single feed-forward approach, contrary to the original
TNST that required multiple single-view passes. The contributions of our deep convolutional
transport neuronal style transfer method, DCTNST, can be summarized as follows:

• The first feed-forward Deep Convolutional Architecture for Volumetric Stylization, en-
abling speed-ups up to 2 orders of magnitude faster than TNST

• A scalable and carefully fine-tuned patch-based approach that allows the stylization of
large volumes of smoke (teaser) while providing computationally efficient stylizations

• Viewpoint-independent and temporally coherent smoke stylizations enabled by the inher-
ent smoothness provided by our generative Deep CNN architecture.

2



2
Related Work

The artistic stylization topic has been studied for a long time, early method relied on placement
of virtual strokes or image processing and filtering which suffered from either being compli-
cated, produced limited quality results, or were not able to generalize to any style. Early style
transfer methods were studied as a texture synthesis problem, and aimed at transferring pixel
patches from a style image into the target image, however they were lacking of high-level style
patterns. It was not until Neuronal Style Transfer (NST) methods appeared that the field was
not revolutionized: They key idea of the success is to use a pre-trained convectional neuronal
network to generate global style statistics that allow to change the appearance of a piece of work
to look like any target image with a perceptual loss.

Style Transfer methods can first be divided into two categories: online and offline. Online
neuronal style transfer rely on iterative optimization methods, for example gradient descent.
However, computing the optimization process is computationally expensive and can require a
lot of memory due to gradient propagation and storage, specially when considering 3D density
fields, as in Kim et al. [KAGS19]. For this reason, Online neuronal style transfer is not suitable
for interactive applications. On the other hand, modern offline methods move the computation
burden to a training stage which can be executed more efficiently on a cluster designed for par-
allel computation and with more high-end hardware. Offline methods train a neuronal network
in the task of stylization which can later compute stylized results much faster at test-time.

In addition, style transfer methods can be further categorized into Parametric Neural methods
with Summary Statistics, and Non-parametric Methods. Whereas parametric modeling uses
a global statistic, typically the gram matrix, to describe entire neuronal feature layers, non-
parametric methods either try to directly aggregate pixel patches from the source image to the
target image or extract neural patches from the features layers which are then compared or
swapped to minimize a MRFs based loss. Non-parametric styles are capable to better capture
local style characteristics allowing better preservation of fine detail, improving representation
of texture styles (e.g. brick wall), and provide more flexibility to adapt to changing style across

3



2. Related Work

the image: However they perform worse at capturing more structured styles (e.g. face style).
For a thorough review of Neural Style Transfer methods, refer to Jing et al. [JYF+19].

Finally, Generative Adversarial Networks [GPAM+14] (GANs) have been used in many works
to replace more simple pixel-losses, such as the l2 loss, with a more complex loss learned by a
CNN which ties do distinguish between ground truth and generated data. After the idea of per-
ceptual losses were introduced and widely employed in image super-resolution, the combination
of GANs and perceptual losses has shown specially impressive results: this combination is pos-
sible by using neuronal features as the input to the adversarial network. Ledig et al. [LTH+16]
work was able to better capture high-frequency information compared to other approaches with
results that, even though provide excellent peak signal-to-noise ratios, are often still lacking
high-frequency details and are visually unsatisfying. Furthermore, taking inspiration from of-
fline NST, GAN style-based face generators [KLA18] provide more intuitive control over latent
spaces high-level attributes and stochastic variation while generating images of high quality.

2.1. Online Style Transfer

Online Neural Style Transfer algorithms perform feature matching by iteratively solving an un-
constrained minimization problem through back-propagation, modifying values independently
to approximate second-order statistics of a given input.

2.1.1. Parametric Neural Style Transfer with Summary Statistics

The seminal work of Gatys et al. [GEB16] enabled transferring styles between images, and
since then, NST has been a topic of active research. The authors apply the gram matrix to each
of several feature layers of a pre-trained VGG network to capture the style of an image. The
gram matrices can be then used to define define a style loss between a target image style and
an input image. Similarly, an additional content loss is used so that the objects and shapes in
the output image are related to the input image. For the content loss the euclidean distance
between one feature layer of original input image and the image being optimized is used. The
idea is that the gram matrix can capture global statistics that make a particular style whereas the
euclidean distance help preserve original high level spatially-variant structures. Feature layers
at the beginning of the classifier are more suitable for the content loss because they encode
high-level arrangement of objects. In comparison, information encoded in the features closer to
the end of the network tend to reproduce pixel-values from the original image.

The gram matrix of a feature map Gl can be defined as in equation 2.1. Each entry ij of the
matrix mesured the correlation between filter responses of two different channels of the feature
map F l(I) (see fig.). After a image I is feed-forward into a classifier network then a response
2D filter map F l(I) is taken at the lth layer of size Hl ×Wl × Cl (height, width, number of
filters) of the network and each filter F l

i (I) is flattened into a one-dimensional vector ~F l
i (I).

Then the inner product of two filters 〈~F l
i (I), ~F l

j(I)〉 is used to provide spatial invariance.

4



2.1. Online Style Transfer

Figure 2.1.: Computation of the gram matrix for the feature responses at layer l = 2 of VGG that capture
style charasteristics of image I

Gl
ij(I) =

Hl×Wl∑
k

F l
ik(I)F l

jk(I) (2.1)

The definition of gram matrix can be modified [Sne17] modified to include normalization (eq.
2.2). Optionally, normalization that can take channel dimension Cl into account [KAGS19].

Gl
ij(I) =

1

HlWlCl

Hl×Wl∑
k

F l
ik(I)F l

jk(I) (2.2)

Furthermore, since VGG was trained on Imagenet dataset, is common practice to also normal-
ize the input image I = (Ir, Ig, Ib), 0 ≤ Ic ≤ 1 using Imagenet mean (0.485, 0.456, 0.406)

and standard deviation (0.229, 0.224, 0.225): I ′ = ( Ir−0.485
0.229

, Ig−0.456

0.224
, Ib−0.406

0.225
) This practice can

be found for instance, on the fast neuronal style transfer implementation at pytorch examples
repository.

The style loss Ls that measures how similar is the style of the image we are optimizing Ix to the
image with the style we want to achieve Is is in eq. 2.3. The definition uses the sum of squared
differences of gram differences across different L layers, where each layer can be weighted
differently wl.
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Ls(Ix, Is) =
L∑
l

wl
∑
i,j

(Gl
ij(Ix)−Gl

ij(Is))
2 (2.3)

And content loss Lc can be defined by using an unmodified version Ic of the image we want
to stylize and its neuronal features on a single layer. Note that the equation corresponds to the
original definiton by Gatys’: Optionally the loss could be modified to take into account multiple
layers and normalization.

Lc(Ix, Ic, l) =
1

2

∑
i,j

(F l
ij(Ix)− F l

ij(Is))
2 (2.4)

Further improvements to Gatys et. al idea include: reduction of instabilities and artifacts by his-
togram [RWB17] and Laplacian [LXNC17] losses, tailoring stylization for portraits [SED16],
multi-scale stylization (sec. 2.1.1), and enabling long term correspondences in video sequences
[RDB16] (sec. 2.1.3). In addition, Li et al. [LWLH17] proposed an efficient way to compute
style statistics by measuring discrepancies between two distributions, improving computational
efficiency over the traditional Gram matrix [SZ14].

Outside the realm of images, transferring styles from images to meshes was enabled by dif-
ferentiable rendering with approximate [KUH18] and analytic [LTJ18] derivatives. Closer to
our work, Kim et al. [KAGS19] proposed a transport-based neural style transfer (TNST) to
stylize volumetric smoke data. TNST supports complex styles generated from single images
or from network activation maps, creating novel volumetric stylizations. Since their approach
indirectly modifies fluids by computing stylization velocities in a fully differentiable setup, the
amount of smoke present on the original simulation can be better preserved. Transport based
approach does not suffer from ghosting artifacts and thinner smoke structures that the value-
based approach used in traditional image stylization approaches produce when density sources
are artificially created and removed to match targeted features.

Multi-scale style transfer

When using a pre-trained network to capture texture characteristics of a single high-resolution
target image, the network might be only able to capture small details and bigger patterns can be
missing because the receptive field of the pre-trained neuronal network is limited. Middle layers
of the classification network have typically used for the style loss due to having better texture
representation power whereas layers closer to the input can represent bigger-scale features.
However, even when using layers at the beginning or using a combination of layers, the results
are limited. Xavier [Sne17] found higher-quality results by extending the already studied idea of
Gaussian pyramid for texture synthesis: his idea consists on feeding the image at many different
resolutions into the pre-trained classifier rather than using many layers but only feeding the
image at a single resolution.

Let In be an image at the nth level of a Gaussian pyramid PN(I) = {I0, I1, ..., IN−1} with N
levels, and the corresponding gram matrix at one of the layers l be Gl(In). Then, equation 2.3
can be modified to take into account scales as shown in equation 2.5.
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Ls(PN(Ix), PN(Is)) =
N−1∑
n=0

Ls(Inx , Ins ) =
N−1∑
n=0

L∑
l

wl
∑
i,j

(Gl
ij(I

n
x )−Gl

ij(I
n
s ))2 (2.5)

Kim. et al. [KAGS19] followed the idea of using a Gaussian pyramid for multi-scale transport
based density stylization. In their iterative optimization algorithm they first optimize higher
levels of the pyramid (at lower resolution) and after a determined number of steps move to
lower levels of the pyramid. In figure there is a comparison of multi-scale vs single-scale 2D
density stylization implemented on pytorch that follows a similar approach. As can be seen
multiple style scales play a big role to achieve visually pleasing stylization. The ability to
reproduce bigger patterns is specially important to faithfully represent the style of images that
are comprised of bigger objects such as flowers or spirals.

2.1.2. Non-parametric Style Modelling

Li and Wand [LW16a] were the first to propose a method to combine MRF and a DCNN for
artistic synthesis, achieving improved texture coherence suitable for photo-realistic style trans-
fer compared to parametric style transfer. They replace the Gram Matrix matching loss by a
MRF regularizer for the style loss; and keep a content loss similarly as on Gatys work. For their
style loss they use the higher levels of a pre-trained VGG network from which they extract local
patches allowing the stylization to adapt to various local features.

F (I) are the feature responses of a layer in the network after feeding the image I . The method
extract local patches Ψ(F (Ix)),Ψ(F (Is)) from feature responses corresponding to the image
being optimized Ix and the target style image Is. The local style loss is then defined as in
equation 2.6: It measures the distance from each neural patch Ψi(F (Ix)) to its best matching
neural patch from the target style image ΨNN(i)(F (Is).

Ls_local(F (I), F (Is)) =
P∑
p=1

||Ψi(F (Ix))−ΨNN(i)(F (Is))||2 (2.6)

On a more recent work from 2019, Zhao et. al [ZRL+19] combine both global and local ap-
proaches with a hybrid loss to achieve better quality results: their local loss is based on Li and
Wand [LW16a] eq. 2.6 and their global loss on Gatys’ eq. 2.3.

Another interesting recent work is from Texler et al. [TFL+19] which propose a hybrid global-
local method which is able to efficiently process images of extremely high resolution. They use
neural style transfer to generate a low resolution image used to guide a pixel-level patch-based
synthesis which focus on the details.

2.1.3. Online Video Neuronal Style Transfer

If we directly apply previous algorithms to the frames of a video without more considerations
temporal artifacts would appear, we would be able to see flickering as a result of drastic differ-
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ences between the stylized results of two consecutive frames. Ruder et al. [RDB16] extends
[?] algorithm to videos by adding a temporal consistency loss with a per-pixel loss between the
current stylized frame and the previous stylized frame wrapped with optimal flow.

A more recent 2019 work from Jamriska et al. [JvST+19] produces video stylization with
impressive quality with iterative optimization. Their method is based on non-parametric patch-
based stylization. Temporal coherence is ensured with the help of two guiding channels: the
patch selection algorithm have to minimize additional constraints imposed by the guides. The
temporal guide for next frame is obtained by wrapping an already stylized frame with optical
flow. An additional positional guide, which can be similarly forward wrapped, help further
solve ambiguity between similar features that could be applied to a region, ensuring that the
same particular features of previous frame will appear again on the same regions at next frame.

In the realm of 3D volume stylization, Kim et. al [KAGS19], are able to stylize density while
being temporally coherent. In their method, stylized densities are obtained by optimizing a
velocity field that transports the initial densities into stylization: they can achieve temporal
coherence by smoothing the stylizing velocities with a given window size.

2.2. Offline Neuronal Style Transfer

2.2.1. Fast Parametric Neuronal Style Transfer

Johnson et al. [JAL16] and Unlyanov et. al [ULVL16] were the first works that improved
test-time efficiency by the usage of a feed-forward approach. [JAL16] originally used batch
normalization after convolutions, however on a later work Ulyanov et. al [UVL17] discovered
that using the same architecture of Johnson’ but using instance normalization can increase the
quality of stylization.

Whereas Ulyanov’ uses a feed-forward network with an architecture that takes an input image
resized at different resolutions on a multi-scale CNN and a single style loss, Johnson’ takes as
input a single image on its original resolution and uses a simple sequence of layers, including
five residual convolutional blocks at the same spatial resolution.

An architecture based on Jhonson’ with instance normalization is often adopted as the basic
network structure of many following works. In addition, deconvolutional layers based on strided
convolution can introduce checkerboard artifacts and are often changed by nearest neighbor up-
sampling and a non-strided convolution [UVL17]. Offline approaches were further improved
by fine-control over stroke brushes [JLY+18], and capturing styles across distinct texture scales
on a work by [WOZW16] wich uses multiple losses and sub-networks.

Haoyu Li et al. [LXC+18] use an architecture that takes the input content image at lower resolu-
tion and performs most of the operations at a lower spatial resolution space before up-sampling,
allowing for even faster style transfer than [JAL16] and and specially suitable for real-time styl-
ization of high resolution images (1024x1024 or more pixels) on embedded devices. They show
images with comparable quality results to [JAL16] and show results with slightly lower style
loss. To reduce the computational cost of nearest neighbor up-sampling followed by convolu-
tion in higher-resolution space while voiding checkerboard artifacts they use efficient sub-pixel
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shuffle up-sampling [ALT+17]: which reorganizes (shuffles) the features after convolution in
low-resolution space (cheaper to compute) to features into higher-resolution space. To fur-
ther improve speed, dense convolutional blocks, which are highly parameter efficient, are used
together with bottleneck layers (1x1 convolution) placed before each dense-block and which
reduce the number of input feature maps. The densely connected convolutional layers use in-
stance normalization after each convolution (post-normalization).

Driven by impressive results in image generation with adversarial training, a more recent field
of study has found how translate a image from a collection (e.g. photograph with zebras) into
another collection (e.g. photograph with horse) with GANs. This can be applied to styliza-
tion by for example defining a collection named Photographs and learn the mapping to, for
example, Van Gogh Paintings. However, for training, the stylization then needs more than a
particular image of the target style, it needs a collection of images resembling that style. Cy-
cleGAN is a popular architecture with a generator based on [JAL16] architecture. CycleGAN
has recieved attention by newer papers with improvements for semantic information [LY19],
color and edge constraints [ZYC+19]. Also it has been used as baseline for improved architec-
tures: Gated-GAN [CXY+19] (multiple-styles, improved stability) and Artsy-GAN [LMZ18]
(improved quality, diversity and performance). There has been some attempts to train a GAN
on a 2x2 patches to blend patches borders but the result are not completely seamless [hdg].

2.2.2. Fast Non-Parametric Style Transfer

Li and Wand follow up previous work in based in MRF local stylization (sec. 2.1.2) with an
approach based on a generative adversarial network to synthesize a particular style in real-time
[LW16b]. The adversarial network take as input randomly sampled neuronal patches from
VGG-19 layers. The texture/style loss is obtained by the adversarial network which learns to
distinguish the neural patches from the style image from those extracted from the image that the
generator network creates. The generator network, which decodes a latent variable to a stylized
result, is trained as part of a variational auto-encoder (VAE) with a pre-trained VGG-19 encoder
whose weights are kept fixed during training.

2.2.3. Multiple or arbitrary style fast style transfer

Previously discussed CNN architectures can do style transfer much faster than iterative op-
timization methods. However, these are still limited to the style of a single image and new
models need to be trained to use a different style.

Newer extensions focus on multiple [DSK16] or arbitrary [HB17] [LLKY19] images per-model
stylization. Dumoulin et al. [DSK16] use same architecture as [UVL17] but replace instance
normalization with adaptive instance normalization, which includes additional scaling and trans-
lation parameters that can adapt to learn multiple styles.

Later, Huang et al. [HB17] follow up this idea with Adaptive Instance Normalization (AdaIN)
to reduce model size and to be able to input an arbitrary target style to the network. Huang
generator architecture use the first layers of a pre-trained VGG as a fixed encoder, AdaIN is
used only once after the encoder, and its followed with a trainable decoder that mostly mirror
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the VGG layers. Since the VGG encoder has many parameters the model can be slightly slower
than previous single-style feed-forward approaches.

Finally Li. et al [LFY+17] improve the quality of [HB17] results by replacing AdaIN with
whitening and coloring transformation. In addition, whilst [HB17] can be trained for arbitrary
styles but cannot generalize to unseen styles, [LFY+17] can also work for any arbitrary unseen
style. Both implementations and are much faster than Gatys’ iterative optimization [GEB16],
however the more expensive whitening and colouring transformations makes the model 17 times
slower at 1024x1024 than previous single-style approaches. For this reason a more recent work
[LLKY19] substitutes whitening and colouring transformations by a CNN transformation mod-
ule.

Work of Shen et al. [SYZ17] took a different approach by using meta-networks to allow for
arbitrary styles and a small model size, suitable for real-time arbitrary stylization on mobile
devices. A small network is trained to produce the weights of a larger image transformation
network that can stylize images. The meta-network can encode an arbitrary new style on 19
milliseconds and then be used to transfer the style to an image in 11 milliseconds on a modern
GPU.

Looking into non-parametric style transfer methods, Li and Wand GAN (sec. 2.2.2) is only
able to learn one style. Chen and Schmidt [CS16] propose to feed both input image and target
style image into a convolutional network encoder and then that swap most similar input feature
patches to the style patches. After the patch swap, the resultant features are feed into a decon-
volutional network to produce the final stylized result efficiently. The deconvolutional network
can be trained to produce images in multiple styles and can generalize well beyond its trained
set of styles.

Finally, there is some GAN work that has been able to use a U-Net and adversarial losses
to transfer a human-made sketch into coloured paintings with a dataset of paired examples
[ZJL17]. Before the U-Net generator performs the decoding step, the latent code of the style
image processed from VGG is added to the features of the U-Net encoder; this way the generator
is able to incorporate the color style characteristics of any painting.

2.2.4. Time Coherent Fast Style Transfer

Gupta et al [GJAF17] uses a recurrent convolutional network for real-time video style trans-
fer: at each time step the inputs are the current content image frame and the previous stylized
frame, both inputs are concatenated along the channel dimension. The network architecture is
similar as [DSK16] and, in addition to style and content loses, it uses the same temporal loss
as [RDB16]. The optical flow is only used on training stage, facilitating speed at test-time.
However, the network cannot take into account long-term consistencies where artifacts appear
when objects gets occluded or new objects appear.

Chen et al. [CLY+17] produces real-time consistent stylization over longer periods of time
using a feed forward network that takes as input two consecutive frames. It uses Jhonson’
[JAL16] architecture but with additional operations between the encoder and the decoder: the
input to the decoder is a linear combination of current frame features from the encoder and
wrapped features of the previous frame. The linear combination depends on a mask that is
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computed by an additional sub-network. It needs to use a optical flow sub-network and the
mask sub-network at test-time.

Huang. et al [HWL+17] uses a feed-forward network who only takes a single frame as input and
produces the stylized result. Optical flow is only used during training. Even though the network
takes a single frame the authors claim how with sufficient training its capable to produce real-
time temporal consistent video. The architecture of the stylizing network is similar to [UVL17],
Jhonson et al. [JAL16] architecture with instance normalization, but uses a smaller number of
channels to reduce the model size and allow faster computation.

2.3. Machine Learning

2.3.1. Deep Convolutional Network Architectures

Deep Convolutional Neuronal Network have shown great results in many field of Computer
Vision, and Image Processing. Many of the recent improvements have to do with innovative
changes in architecture: the idea of processing information on multiple-path has gained special
attention. In addition, the idea of using blocks of layers as a structural units with build the
architecture. Skip connections have been used successfully in many works to allow for easier
flow of information through the network: easing training by alleviating vanishing gradients. In
particular, ResNet [HZRS15] or DenseNet [HLvdMW16] have introduced and shown the ben-
efits of convolutions blocks which include skip-connections between the layers that comprise
the block.

Whereas feature reuse in a ResNet block is introduced with feature summation and requires
sufficient depth in the network to improve performance, on a dense block, each layer has as
input the features from all previous layers using concatenation. Feature concatiation allows to
propagate and increase variation of the input on subsequent layers enabling to learn more useful
features. The increased sharing of knowledge between convolutional layers in the block makes
densely connected networks highly parameter efficient: meaning that they are able to obtain
similar or better quality results with less parameters. Less parameters in consequence also ease
computation, increase speed compared to wider or deeper architectures that yield similar results.

SRResNet and SRDenseNet are examples of network architectures based on ResNet and DenseNet
and that have shown excellent results for super-resolution task. SResNet architecture has shown
its best results when combined with perceptual losses and adversarial training (SRGAN) [LTH+16].

The popular U-Net autoencoder has also been used extensively on image processing. It also has
been used for superesolution work both on images [HNW+19][LC19] where has been found
that the skip connections between the encoder and the decoder are essential to recover details
[LC19], and on 3D flow super-resolution (see tempoGAN in section 2.3.3). In addition, it has
been used on sketch stylization [ZJL17] where the authors found better minimization of target
loss by adding auxiliar output paths at different stages of the decoder and providing additional
guiding losses to those outputs: they argue that in some cases it is possible that the network
favours information from skip connections and that gradient do not flow through middle layers.
Additional losses force gradients to also flow on low-level layers of the network.
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Modifications of U-Net convolution blocks, originally comprised of two convolutional layers,
has also been previously studied. It is common to use interpolation up-sampling instead of
transposed convolutions to decrease checkerboard artifacts. In addition, the use of convolu-
tion blocks with one convolution instead of two has been used in super-resolution for increased
speed [LC19]. Residual blocks have been also used on the encoder part for super-resolution
[HNW+19] and dense blocks can be used both in the encoder and decoder for increased param-
eter efficiency [ZJX+18] [GKSC20]. On a work in the field of image reconstruction [GKSC20],
U-Net has shown shown that even though a dense block has more convolutional layers this is
offset by using less features per convolution, at the end yielding similar processing speed and
better quality results.

Padding and border artifacts

Padding before convolution is used to preserve spatial resolution. However, convolutions can in-
troduce border artifacts when a simple zero padding is used. Replication and reflection padding
seem to slightly improve results but do not guarantee to get rid of all artifacts as it has been
show that in some cases they can produce the same level or worse of artifacts [LSW+18]. Some
patch-based works with overlap use padded convolutions and opt to simply crop the result if
there are any border artifacts [LLWZ18].

The vanilla U-Net [RFB15] uses un-padded convolutions to avoid border artifacts, however each
un-padded convolution lose some spatial resolution, and at the end the output image resolution
is smaller than the input, and thus when used to process high-resolution images in multiple
patches, it forces to use a minimum amount of overlapping on its tiling scheme, increasing the
total amount of computation. In addition, network based on dense blocks, with considerably
higher number of convolution layers, cannot opt to use un-padded convolutions because spatial
resolution would be reduced excessively.

A more advanced method for padding are partial convolutions [LSW+18], originally designed
for in-painting, they are able to mask their input so that invalid data holes in the input are not
taken into account for prediction by the convolution weights. For padding, the idea is to treat
the padding region as invalid data with the mask, so that they do not wrongly influence the
prediction.

Other works aim at reducing or eliminating border artifacts by increasing context information
for a patch: in the field of image compression, an additional network that takes as input neigh-
boring patches has been used to generate a prediction within context that will be refined by the
main network module to obtain the final result for a patch [MTC+18]. A multi-scale U-Net
which takes sub-tiles at different resolutions as input has been used in segmentation to better
capture contextual information in semantic segmentation [LSH+18].

2.3.2. Machine Learning and Volumetric Data

Volumetric data commonly used with Deep Convolutional architectures is inherently differ-
ent than typical image-based datasets. Contrary to images, three dimensional volumetric data
often relies in sparse occupancy voxels, scaling much worse than images due large regions

12



2.3. Machine Learning

without information. Nonetheless, several methods employ machine learning for handling 3D
data, specially for object classification [MS15, QSN+16, BLRW16] and human-pose estima-
tion [GTHC19]. Volumetric Auto-Encoders were used to learn flow field deformations for
object manipulation [YM16], synthesis of 3D volumetric hair occupancy data and flow fields
[SHM+18], reconstructing 3D faces from single images [JBAT17], and combined with Spatial
Transformer Networks to recover 3D structures from tomography data [YS18]. Recent ap-
proaches combine differentiable rendering [LB14] with voxelized data to learn richer features
representations. Variational Auto Encoders [LSS+19] and Generative Adversarial Networks
[STH+19] embed two dimensional data in a 3D feature space, enabling better view extrapola-
tion when compared with screen space techniques. However, all aforementioned approaches
treat the domain in a monolithic fashion, making it challenging to generalize for arbitrarily
high-resolution data-sets.

Since fluid simulations easily grow to large resolutions due their volumetric nature, we have
reviewed previous machine learning approaches supporting large datasets. Progressively grow-
ing network layers [KALL18, ZXL+19] [KLA18] as training advances speeds-up and increases
Generative Adversarial Networks (GAN) stability in high-resolutions. Brock et al. brock2018
further improved scalability and stability when growing convolutional layers of previous archi-
tectures using self-attentive GANs [ZGMO19]. However backpropagating weight updates for
architectures with large datasets might necessitate prohibitively large memory requirements.
Thus, several synthesis methods subdivided the generative process in smaller patches that are
combined to form a large final image. Früstück et al. [FAW19] modified generative latent
codes by Markov Random Fields to avoid repetition and visual artifacts between patches, and
GANs were employed for patch-based synthesis of non-parametric textures [ZZB+18] and im-
age super-resolution [LTH+17]. However, to the best of our knowledge, no approaches com-
bined direct CNN patch-based synthesis for high quality 3D volumetric data.

Facebook auto-encoder for volume reconstruction

Lombardi et al. [LSS+19] is capable of reconstructing a volume with color and opacity at each
3D position from a collection of viewpoints. The algorithm is specially suitable for interactive
handling of video. Accounting for opacity allow to converge faster during training by widening
for the discovery of good solutions whilst also makes the approach capable of reconstructing
structures such as moving hair or smoke. The ability of the network to reconstruct smoke
volume densities while handling temporal information is of special interest for this thesis work.

A variational KL-divergence loss to enforce smoothness on latent space enables the network to
implicitly encode temporal information on latent space and learn dynamical temporal informa-
tion when training the network with different images of same sequence. They are also able to
generate volumes of a sequence by interpolating the latent codes of two key-frames.

The authors use a regularization term to avoid over-fitting and found good results with 3 view-
points, and limited improvement by increasing the number of viewpoints. They are able to
produce a volume of 1283 at 90 times per second using a bottleneck architecture for a decoder,
compared to the rate of 22 times per second using a convolutional decoder. They have to use
background reconstruction and additional priors to help reduce artifacts that are common on
challenging reconstruction problems.
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An interesting part of the work of [LSS+19] is that they are capable of increasing the level
of resolution of the final volume without increasing grid resolution and increasing memory
requirements. They use a wrapping function that maps positions on a wrap volume to a template
volume in order to sample it for ray-marching rendering.

2.3.3. Machine Learning and Fluids.

The feasibility of machine learning architectures to regress fluids representations was first
demonstrated by Ladický et al. [LJS+15]. The authors approximated a Lagrangian fluid
solver by Regression Forests, achieving impressive efficiency in SPH neighborhood compu-
tations. CNN-based architectures were employed in Eulerian-based solvers to substitute the
pressure projection step [TSSP16, YYX16], to synthesize flow simulations from a set of re-
duced parameters [KAT+18] and to approximate steady-state velocity fields for predicting aero-
dynamic forces [UB18]. A LSTM architecture [WBT18] predicted changes on pressure fields
for multiple subsequent time-steps, speeding up the pressure projection step, while matching
low resolution simulations to higher resolution ones was enabled by a CNN for flow correc-
tions [XWY19]. Differentiable simulations pipelines [SF18, HLS+18, HAL+19] that can be
automatically coupled with Deep Learning architectures are recently a trend due their natural
ability to interface with computer vision. GAN-based [XFCT18], slice-based [WXCT19] flu-
ids super-resolution enhanced coarse simulations with rich turbulence details, while also being
computationally inexpensive. While these approaches produce detailed, high-quality results,
they do not support transfer of arbitrary smoke styles captured from single 2-D images. Ad-
ditionally, their method shares the same restrictions of previous approaches to domains that
fit inside the GPU. Data-driven [CT17] replaces smoke patches with data from a high detail
fluid repository. Dictionary-based [Bai19] approach can process high-resolution smoke blend-
ing overlapped regions of patches using a Gaussian kernel, even though the work suffers from
overfitting the tiling approach can be used for inspiration.

3D flow super resolution with GAN

The ability of tempoGAN [XFCT18] to generate surprisingly detailed flows while being tem-
porally coherent is attributed mainly to the adversarial losses computed in feature space. They
show results where adversarial losses greatly outperform manual losses on the final quality.

Furthermore, the authors show significant improvements on temporal quality by also inputting
velocity in addition to the density field to the network. In addition, it is interesting that both
the input velocity field and loss hyper parameter can be modified to produce different effects of
stylized outputs.

They compare several temporal loss and found the best results by using a discriminator network
that receives three aligned densities from the generator and from the training data set, the densi-
ties of previous and next frame are aligned to current frame by performing neuronal advection
with known velocities.

For tempoGAN network architecture, the authors mention they have achieved high-quality re-
sults both with a generator based on two up-sampling layers followed by five residual blocks,
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and with generator based on U-Net; the residual network gave slightly sharper results. They use
nearest neighbor upsampling instead of deconvolutions to avoid checkerboard artifacts. They
are able to generate a final 1283 output in 2.2 seconds on average, with a x4 super-resolution
factor and two GTX1080 Ti GPUs.

15





3
Method

Our work focuses on obtaining efficient, high-quality and scalable stylization for fluids, since
previous offline approaches were never targeted for data-sets as large as ours. Thus, our archi-
tecture is currently restricted to single-style transfer.

Our stylization is based on global statistics and the gram matrix. Whilst non-parametric texture
synthesis methods have shown great scalable and detailed results, especially when combined
with GANs, our work requires that requires to transfer style from an image into a volume is
incompatible with the aforementioned approaches: 2D patches, either at pixel space or feature
space, from the style image cannot be directly aggregated into the higher-dimensional volu-
metric density field. In addition, our works aim for producing a stylizing velocity field and
not directly densities to better be able to preserve the original amount of density (See TNST
approach 2.1.1).

Finally, whilst adversarial training has shown great results in previous work, there is not a
straightforward extension into stylization, since GAN approaches often require a collection of
ground-truth data for the discriminator. GAN approaches can be more complicated and difficult
to train due to instabilities and lack of control over the discriminator. For this reason, this
work focus on establishing a first baseline of volumetric stylization with manually designed
perceptual losses.

3.1. Single-Style Training Pipeline

This section explains the approach to train a model that learns to change an input density field
to look alike a single target style image. To ease the understanding of the approach, a 2D
method is first explained. Then the necessary changes to extend to 3D are explained. The
2D method can be used to compare how quality and other factors are affected after making
changes in the pipeline to extend to three dimensions. In addition, it is very useful to have a 2D
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implementation to train and make quick experiments before having to wait for longer training
times of a 3D network. The 2D/3D sections help to get a high-level overview of how all the
components are interconnected in the computation graph before diving into the details of the
network architecture. Some of the illustrative diagrams use pictures from the results for a better
understanding.

3.1.1. 2D

The input to the model and the deep convolutional neuronal network is a un-stylized density
field d. The output of the neuronal network is not directly the stylized density field d̂ but instead
a velocity field v̂ which can be used to transform d into stylization using the advection function
T . This follows the idea of transport-based stylization [KAGS19] which allows decreasing
the artifacts on the final stylized density (see sec. 2.1.1) reaching higher-quality results. The
velocity vectors that the network learns to produce v̂n are normalized: in order to properly
transport the density, it is required to de-normalize the velocity field before using advection.
This is done by multiplying each vector in the velocity field by the size of the density field we
want to transform.

d̂ = T (d, v̂) (3.1)

Once a 2D stylized density field d̂ is obtained it can be feed forward into a pre-trained 2D image
classifier, from which gram matrix of filter responses at different layers are compared to those
responses of the target style image Is, forming a perceptual style lossLs(d̂, Is) (Gatys’ approach
explained more in detail in section 2.1.1). More specifically, features are extracted from four
convolution blocks conv1_2, conv2_2, conv3_3, conv4_3 of VGG-16 after ReLU activation
functions have been applied to the features, and are weighted equally at the loss. The weights
of the VGG network are kept fixed during training and are not updated. Note that VGG-16
expects 3 input channels so the single-field density field needs to be replicated before using it
as an input to the classifier.

Furthermore, given shown importance of multi-scale stylization to achieve pleasing results (see
sec. 2.1.1) a N -scale loss Ls(PN(d̂), PN(Is)) (equation 3.2) can be used instead of single scale
loss by computing the Guassian pyramid PN(d̂) of d̂. The pipeline for this approach is shown
in figure 3.1.

Ls(PN(d̂), PN(Is)) =
N−1∑
n=0
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However, since the resolution of density patches is limited, further down-scaling stylized densi-
ties on a pyramid can result in unsatisfactory quality results. For this reason, alternatively only
the style image (which can be high-resolution) can be downscaled on a Gaussian pyramid, this
modification is shown in fig. 3.2 and equation 3.3. Note that since the size of the gram matrix
only depends on the number of filters of the feature layer, gram matrices will have the same
number of columns and rows even for differently sized images.
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Ls(d̂, PN(Is)) =
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The advection operator must be fully differentiable so that the losses attached to the model
can propagate backward through it. To achieve this requirement, a tensor-based PyTorch ad-
vection implementation which supports first order, and second-order MacCormack method is
used. Whereas second-order advection provides a higher quality result, first-order advection is
a simpler mapping than second order, it is faster to compute and should be easier to learn. The
advection does not take into account boundary conditions.

Choice of pre-trained image classifier

VGG is used on Gatys paper and is typically adopted on many works but experimenting with
different pre-trained networks and layers can result in very different stylizations for the same
style image. For 3D density stylization Kim. et al [KAGS19] use inception for their stylization
because the model has a smaller number of parameters and thus helps in their already memory-
bound iterative optimization. However, the size of the image classifier is less of a problem for
the feed-forward approach because the configuration of patch-size allows us to keep memory
usage under control and the classifier is only needed at training-time. We have found that style
loss based on VGG-16 is easier to tune (selection of feature layers and weights) to obtain good
results since VGG-16 is able to produce richer feature responses [Inc].

Residual velocities and auxiliary losses

A more advanced approach to previously shown pipeline consists of adding additional output
paths at several depths of the network together with additional losses for those outputs. This ap-
proach is inspired from [WOZW16] and [ZJL17]. [ZJL17] uses additional decoders and losses
on U-net architecture, whilst [WOZW16] attach losses of increasing scales at different stages
of their network. The additional losses can work as shortcuts for the optimizer to deeper layers
of the network, allowing gradients to flow easier and ensuring different parts of the network
update their weights.

The resolution of each of the output velocities v̂0, v̂1, ...v̂N has a correspondence to one level
n in a Gaussian pyramid with N levels and can be used to advect a pyramid of input densities
PN(d) and obtain the stylized result at each level: d̂n = T (dn, v̂n). The computation of the
density field pyramid PN(d) is only required at training time in order to be used for advection
with additional velocity fields and construct style losses per scale. At test-time only the highest-
resolution velocity field v̂0 is used for advection. The auxiliary losses Lns are single-scale losses
for a corresponding level of the pyramid Lns (d̂n, Ins );n ≥ 1 whereas a multi-scale loss that
makes sure all scales information are taken into account for the final result is used at the highest
resolution density field d̂0 (either equation 3.2 or 3.3).

In addition, inspired by incremental optical-flow architectures [HTL18, ZYCD18], the neuronal
network outputs can be configured so that they correspond to a set of intermediate residual ve-
locities vn+. The residual velocity at each level vn+ is added to the bilinearly upsampled velocity
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3. Method

Figure 3.1.: Basic Training Pipeline. After obtaining stylized density field d̂ a Gaussian pyramid is used
as part of a three-scale perceptual loss which targets style on image Is. In this example only
one of the layers of VGG is used for stylization. Note that this figure considers the neuronal
network as a black-box to simplify the illustration. For details on how each network output
is obtained refer to network architecture at section 3.2.

found at one higher level v̂n+1 in the pyramid, yielding the next scale velocity in the pyramid
v̂n. The learned residual velocity at each scale is normalized so the vector’s magnitude does
not need to be re-scaled before the addition. The idea of computing the final velocity field in-
crementally is that the problem can be decomposed in smaller easier steps. Furthermore, by
decomposing the velocity field is possible to do additional post-processing on particular scales.

v̂n = vn+ + upsample(v̂n+1) (3.4)
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3.1. Single-Style Training Pipeline

Figure 3.2.: Original multi-scale loss idea from figure 3.1 is modified so that a Gaussian pyramid is used
only on style image Is.

Figure 3.3 illustrates how both ideas, auxiliary losses and incremental computation of velocity
field, can be combined.

3.1.2. 3D Volume

In the 3D case, the input to the 3D network is a single-channel 3D density field d : R3 −→ R
and the output a collection of residual 3D velocity fields that can be used to reconstruct the final
stylizing 3D velocity field v̂ : R3 −→ R3 and stylized 3D density field d̂ = A(d, v̂).

The pre-trained network used for the style loss takes as input 2D images so it is necessary to
find a way to connect the output 3D field d̂ with the 2D perceptual style loss. This is done by
obtaining 2D renderingsRΘi

(d̂) from multiple views Θ0,Θ1, ...which can be then used as input
to the pre-trained image classifier. The rest of the training pipeline is kept the same as in the 2D
case.

The camera positions are parametrized by a three-dimensional polar coordinate system: Θ =
(θ, φ) where θ represents the azimuthal angle, and φ the polar angle in a sphere.

Sampling new camera positions at every training step allow us to avoid biasing the solution
into a particular view which would make the smoke showcase sharp patterns when the camera
is aligned with a particular view but blurred features appear after the camera moves or rotates
away from that configuration. Camera placement is done by uniform sampling of φ angles in
[−45o,+45o] range and choosing equidistant θ angles which are then all shifted with a randomly
generated value θoffset. Equidistant placement on azimuth ensures the whole volume is covered,
avoiding to place cameras too close to each other in some regions while leaving gaps in others.
Camera placement avoids angles near the poles φ = −90o or φ = 90o because in practice the
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3. Method

Figure 3.3.: Residual Training Pipeline. Auxiliary losses target a particular style scale whereas the final
higher-resolution output can be used as part of a multi-scale loss. Note that this figure
considers the neuronal network as a black-box to simplify the illustration, for details on
how each network output is obtained refer to network architecture at section 3.2.

camera used on the final rendered animations looks at the smoke from the sides and not from
high grazing angles. Using a high number of views allow to cover the whole volume more
uniformly, for this reason, is recommended to use the highest amount of views as possible on
training: on a high-end GTX 1080 Ti GPU, it has been possible to have up to 16 cameras for
patch sizes 643 to 803 without running out of memory.

However, unlike [KAGS19] which uses iterative optimization to samples the camera positions
at every step and slowly change the original density field into stylization, when using a neuronal
network it is not as clear how well the neuronal network weights will be able to keep information
from many views and how well will be the training convergence curve - note that after sampling
new cameras and the optimizer updates the network weights it could be undoing previously
stored information that was geared toward another view. For this reason, the implementation
can be configured to use fixed positions for the cameras, the comparison of fixed views against
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3.1. Single-Style Training Pipeline

sampled views its discussed in the results section.

Similarly, as with the advection function, the renderer must be differentiable so that gradients
can back-propagate during training. This is done by implementing a discrete direct volume ren-
dering equation with tensor operations from the PyTorch library. For direct volume rendering
R(d), the volume can be traversed either forward or backward along depth D dimension, accu-
mulating densities di along the depth axis with opacity factors oi (eq. 3.5). The opacity factors
are based on light transport (eq. 3.6), considering a beam of light that traverses along Z-axis the
opacity is set according to the amount of radiance remaining after absorption events. The final
values are normalized so that they are in a valid image range. A global extinction multiplier σe
is used together with absorbance factors that are set to the density values, this way parts of the
smoke with more density will absorb more light. The extinction multiplier is set to 0.075 for all
experiments.

R(d) =
D∑
i=1

dioi (3.5)

oi = exp(−
i∑

j=1

dj · σe) (3.6)

The orthogonal rendering can be easily performed by applying the direct rendering equation on
the depth Z-axis of the density tensor after it has been transformed into a particular view by
using a 3D rotation matrix with pitch = φi and yaw = θi. The yaw operation on the up y-axis
is performed before pitch. Rotation can be done by encoding the rotation matrix on a spatial
transformer layer that allows for differentiability [JSZK15].

However, when rotating the density patch, which is square-shaped, some gaps without smoke
can appear on the viewport and in theory the network could learn to over-stylize the borders
- generating artifacts that could difficulty a tiling approach. One idea that aims to solve this
problem is to add replication padding to the stylizing velocity and patch density before the
density is advected and while keeping the same rendering-canvas resolution - note that padding
is only added after the network has processed the patch with its original dimensions. Figure
3.4 shows how renderings RΘ(T (pad(d), pad(v∗)) looks like after the padding approach which
extrapolates stylizing velocities into a bigger patch. However, in practice we have not noticed
any benefits (e.g. reduction of artifacts) when using this idea and training can take longer to
reduce the style loss; for this reason, we do not add padding/extrapolation of density/velocity
on the experiments shown in the results section.

The simplicity of the renderer is a positive feature because it doesn’t slow down computation
and training. The main purpose of the renderer is to propagate gradients through the smoke, the
method does not necessarily need to use a more advanced and realistic renderer which could
also increase the need for fine-tuning.
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3. Method

Figure 3.4.: Views of stylized patch with density padding and velocity extrapolation

3.2. Neuronal Network Architecture

The adopted network architecture is based on the U-Net design, which has been successfully
used and studied in many works, typically for image segmentation but has also be used in works
of super-resolution of both images and 3D densities (patchGAN). The network can be used for
2D by using 2D convolutions and bilinear interpolation operations and modified to work in 3D
by changing the operations to their analogous: 3D convolutions and trilinear upsampling.

The U-Net design has several desirable architectural characteristics: First, it follows the shape
of an auto-encoder where the receptive field varies in scale after downsampling/upsampling
operations that occur following each conventional block - this is suitable for multi-scale styliza-
tion.

Secondly, the skip connections between the encoder and the decoder allow both faster training
and have been proven to be effective in recovering not only high-level structures but also more
fine-grained details [LC19].

In addition, the U-Net has been previously used in many works (mainly in image segmentation)
to process in a tiling manner high-resolution images.

Finally, the U-Net model does not including any fully connected layer, which would be typically
placed at the bottleneck of an autoencoder, making the network fully convolutional. This has
the advantage that the network is not limited to process patches of a fixed resolution. This
can be especially useful for the patch-based approach (explained in sec. 3.3) by allowing for a
bigger receptive field that includes more context information when increasing patch-size at test
time. During training the maximum allowed patch-size is more restricted than at test time due
to memory limitations.

24



3.2. Neuronal Network Architecture

The customized design of the U-Net used in this work replaces the transposed convolutions,
that the original UNet uses for upsampling, by interpolation upsampling: The 2D version uses
bilinear interpolation and the 3D version trilinear interpolation. This way checkerboard artifacts
are avoided. In the original U-Net decoder, the number of channels is decreased by a factor of 2
on the convolutional block and an additional factor of 2 on the transposed convolution used for
upsampling. In our design, a convolution block in the decoder decreases the number of channels
by a factor of 4 and then follows the bilinear/trilinear upsampling.

Hyperbolic tangent activation functions are used on the output layers so that the output values
can also be in the negative range, allowing for negative components of velocities. The output
activation function range is down-scaled so that velocity magnitudes do not create unreasonable
transformations (too large transformations that can difficult training). We had success by using
a coefficient of 0.128 for a patch size of 803 for the Tanh, since the velocities are normalized this
means that the maximum allowed translation of density along each axis is of 0.128∗80 = 10.24
voxels. On 2D, a coefficient of 0.08 works well for a patch size of 1282.

The architecture optionally allows for the computation of residual velocities by using additional
1x1 (1x1x1 for 3D) non-strided convolutions at different stages of the decoder as shown in
figure 3.5.

Figure 3.5.: Customized U-Net model for the case of 3 residual velocities (U-Net+3). Width of the
boxes represent the number of channels whereas the height of the boxes represents spatial
resolution.
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The implementation allows the customization of convolutional block and normalization type.
In particular, it allows choosing between single convolution block, double convolution block
(original U-Net), and dense block.

For training, we use Adam optimizer with 0.001 learning rate and gradient clipping. We have
found good results by setting the weight of the style loss to a high value: 1e17.

3.3. Patch Based Approach

Machine learning libraries such as PyTorch are heavily optimized to run on GPUs and perform
computation in parallel. However, when performing stylization the neuronal network is required
to store input data, weights for all the convectional layers and parameters of the trained model
and multiple intermediate results in feature space. All of this can be high memory consuming
especially when dealing with 3D data, and since GPUs memory is more scarce than host RAM,
it results in a heavy limitation of maximum density resolution that can be processed in one pass.

A single-patch based method is impractical and too limited to be used in production, for this
reason, a simple method based on overlaps that enable to process density fields of arbitrary
resolution is proposed and studied.

First, the full-resolution density field of size Dg×Hg×Wg is divided into of regular patches of
same size P 3 (3D) or P 2 (2D). Regular patches can be conveniently stored in row-major-order
in the batch dimension of a tensor, of shape [B,1,D,H,W] for 3D and [B,1,H,W] for 2D, instead
of having to use another data structure. Where D is the depth, H the height, and W the width
of a patch. Since we extract regular patches D = H = W = P . Patches can be overlapped, in
this way, we can both introduce spatial coherence and allow for interpolation at the overlapped
region to stitch the patches and reconstruct the full resolution stylizing velocity field v̂. Whilst
the strength of this approach is its simplicity, increasing overlap size O makes the number of
patches needed to be processed to increase and reduce global efficiency and speed. The number
n of patches necessary to cover the volume is shown in eq. 3.7. In section 3.3.2 we propose an
alternative solution based on smoothing at feature space which does not require overlap.

n = nx + ny + nz

nx = ceil((Wg −O)/(P −O))

ny = ceil((Hg −O)/(P −O))

nz = ceil((Dg −O)/(P −O))

(3.7)

Once the full-resolution velocity field has been found advection is directly performed at full-
resolution to obtain the stylized density field. Advection has a much smaller memory footprint
at test-time (note that at train time it needs to store gradients) so unless the density field is huge
there is no risk of running out of memory.

Furthermore, it is difficult to cover exactly the input domain with a patch-size and overlap
configuration. The input density field needs to be padded pd voxels (3D) or pixels (2D) at each
dimension as in equation 3.8. In addition, in order to avoid exposing further border artifacts,
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3.3. Patch Based Approach

more padding can be added to avoid situations where the border of a patch is aligned or too
near with the border of the domain. This happens because the patches at the boundary of the
domain do not include any stitching/interpolation on one of the sides and the border effects are
more apparent. After the padded density field has been processed the padding is cut off from
the output.

px = nx · P −Wg

py = ny · P −Hg

pz = nz · P −Dg

(3.8)

The divided patches are initially at CPU. The implementation uses an asynchronous approach
to transfer data to the GPU and which allows for overlapping of computation and transfers.
One thread pre-fetches a window of patches from pinned-memory into GPU and keep it on
a queue, whereas the main thread issues processing operations with patches taken from the
queue. Finally, another thread moves the results back to CPU so that GPU memory is freed
and leaves more room for new patches. After all of the output patches have been retrieved then
interpolation can be used to stitch them.

For the best performance and quality results, the highest patch-size that can be fitted into GPU
should be used at a production stage. On one hand, this ensures most of the GPU computing
power is being used. On the other hand, it increases the size of the receptive field of the net-
work decreasing chances of artifacts that appear due to lack of context information which can
make neighboring patches to be more incoherent. Besides, it also reduces the total number of
overlapping regions that are susceptible to break due to border artifacts because the density field
can be covered with less amount of patches. Note that GPU occupancy can also be increased
with smaller patches sizes by batching multiple ones together into the neuronal network module
however a bigger patch size with a batch-size of 1 is still preferred because of more efficiency
due to reduced redundancy of overlaps.

3.3.1. Overlap post-processing: velocity interpolation

Regions with overlap where there are velocities from two patches can be blend together using
a weighting function f(x) for interpolation along the axis of the neighbors: the function will
favor using information from the closest patch.

The weighting function can be for example a simple linear function f(x) = x. Furthermore,
the weighting function can be directly modified as a piecewise function fc(x) to account for
cropping, see figure 3.7. Cropping can be used to completely discard information nearest to the
border that could contain border artifacts that can occur for example depending on the padding
scheme used. Alternatively, the function can be based on a hyperbolic tangent that smoothly
gives less importance to positions near the border (figure 3.8). Having different functions to
choose from gives more flexibility to fine-tune interpolation at test-time for a particular style
and density dataset.
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Figure 3.6.: Linear weighting function

f(x) = x (3.9)

Figure 3.7.: Picewise weighting function

fc(x) =


0 x ≤ c
f(x− c)/(1− c) c ≤ x ≤ 1− c
1 x ≥ 1− c

(3.10)

Figure 3.8.: Interpolation function based on
Tanh

f(x) =
−tanh(−xα+ α

2 )

2
+ 0.5 (3.11)

The blended velocity value at a local position x, y, z on the overlap region of size O between
two neighboring patches along x axis is:

v̂blendx(x, y, z) = v̂x0(x, y, z)(1− f(x/O)) + v̂x1(x, y, z)f(x)

Where vx0 is the velocity from the first patch at the overlapping region, and vx1 the velocity
from the second patch - see figure 3.9 for a 2D visual representation. And similarly for the
other two axes:

v̂blendy(x, y, z) = v̂y0(x, y, z)(1− f(y/O)) + v̂y1(x, y, z)f(y/O)

v̂blendz(x, y, z) = v̂z0(x, y, z)(1− f(z/O)) + v̂z1(x, y, z)f(z/O)

For simplicity we do not treat the special case of corners which would involve 4 additional
diagonal neighbors.
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3.3. Patch Based Approach

Figure 3.9.: Patch overlap velocity interpolation for one of the axis on two dimensions. Example for
patch-size 1282 and 16 pixel overlap corresponding to "Peace" style used in the results
section figure 4.7

3.3.2. Stitching at feature space

A more advanced approach, compared to only interpolating the final output of the neuronal
network, is to instead interpolate feature responses after different layers of the network: since
interpolation is placed between convolution layers the stitching increases its non-linearity, al-
lowing for more complicated variations to connect neighboring velocity fields.

Note that when using an auto-encoder with skip-connections it is not enough with interpolating
at the latent space output of the encoder because the final decoded values will also depend
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on the information that comes from the additional skip-connections. One option is to store
intermediate results after each stage of the decoder, and process data in multiple-passes each
one which computes the next stage of the decoder for each one of the patches. However, storing
all the features requires a large amount of memory that can even exceed available host RAM.
This makes the approach memory bound and poorly scalable, for large simulations if scratch
storage is required then speed is decreased considerably. When using a network based on dense-
blocks with less feature maps the memory requirements are decreased.

A more efficient approach consists of dividing the full-resolution field into cells that form a
checkerboard and doing two processing passes. The following approach is compatible with
non-overlapped tiling scheme:

• The first pass processes patches corresponding to white cells and stores the borders of
size one in feature space at different stages of the decoder (figure 3.10). The center of
feature cells can be discarded because they are only required for the computation of the
final velocity field of that particular patch: this is a huge memory gain compared with the
multi-pass idea that stores all intermediate results for feature interpolation.

• The second pass processes patches corresponding to yet unprocessed densities in the
black cells. In this pass, the network computation graph can be modified to allow for
interpolation at each stage of the decoder. When processing each patch the four (on 2D)
or six (on 3D) neighbor borders are accessed and used to replace values that are near the
border with weighting functions - see figure 3.11.

3.4. Temporal Coherence

The stylization of a sequence of frames can be obtained by individually processing the density
of each frame with the convolutional neuronal network and the patch-based approach. However,
changes in the input density field that happens from frame to frame can cause the network to
vary its output and consequently make smoke style patterns to abruptly vary their shape or
appear and disappear.

If a particular trained model exhibits these problems (as seen in results section depending on
the style image our network can already produce temporally coherence results so no further
action is not required), temporal coherence can be enforced at a post-processing phase, after
the stylizing velocities v̂0, v̂1, ... corresponding to each frame have already been obtained. The
velocity at a frame can be temporally smoothed by looking at velocities in a given a frame
neighborhood of size W = 2w + 1, following an approach similar to [KAGS19].

The method requires the velocities from the original smoke simulation U = {u0, u1, ...} each
one that can take the un-stylized density at ith frame to frame i + 1: di+1 = T (di, ui). The
method uses U to transport velocity fields instead of densities from one frame to another:
T ji (v̂i, U) is defined as a function that can transport an stylizing velocity from frame i to j by
recursively doing advection with the simulation velocities. When the destination frame comes
before the origin frame (j < i) the advection is performed backwards by negating the simula-
tion velocities. For example, equation 3.12 shows how to transport a velocity field two frames
forward and equation 3.13 two frames backwards.
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3.4. Temporal Coherence

Figure 3.10.: Simplified view of how feature responses borders are extracted at each depth of a 2D
decoder. 3D colored boxes represent features after they have been concatenated with the
skip-connection and processed by the convolution block.

T 2
0 (v̂0, U) = T (T (v̂0, u0), u1) (3.12)

T 0
2 (v̂2, U) = T (T (v̂2,−u1),−u0) (3.13)

The velocities in a window centered at i=t, can be aligned together by forward-advecting w
previous frames neighbors with indexes i < t and backwards-advecting next w frames with
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Figure 3.11.: Illustration of an strategy that smoothly transitions to match values at borders with weight-
ing functions on 2D.

indexes i > t. Then the velocities are combined together into the smoothed styling velocity v̂∗

by using some weights wi: see equation 3.14.

v̂∗t =
t+w∑
i=t−w

wiT ti (v̂i, U); (3.14)

The weights are set in order to compute the mean, which in non-special cases is wi = 1/(2w +
1). But note that when doing smoothing and the center frame t is at the beginning t < w − 1 or
end of the sequence t > F − w the smoothing take into account less velocities because of the
missing frames before or next to t.

Whilst [KAGS19] apply temporal smoothing as part of every step of their iterative optimization,
the method only needs one pass over the sequence with our work. Whats more, the window size
W at [KAGS19] is more bounded by memory because their temporal coherence enforcement is
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coupled with optimization: computed intermediate velocity fields on equation 3.14 need to be
stored together in order to back-propagate gradients.

3.5. Masking

Some of the style’s results have shown artifacts where the network learns an stylization that
deforms the original smoke shape excessively and/or halo artifact’s appear.

Artifacts can be reduced by constraining velocities to only into areas where is density by using
a mask m = clamp(a ∗ g(d), 0.0, 1.0) for which a Gaussian g is optionally used to have soft
edges and a coefficient a can be used so that velocities on regions with density at least 1

a
are left

completely unchanged. The mask can be applied to the stylizing velocities either at test-time
v̂masked = v̂ ∗m or as an additional loss so that the network already learn to produce masked
velocities and no additional post-processing is required (eq. 3.15). However, post-processing
mask has the advantage that can be more easily fine-tuned to the particular density field we want
to process and training is easier.

Lm =
1

DHW

D,H,W∑
i

C∑
c

(e(1−mi)∗|v̂i,c| − 1) (3.15)

3.6. Training Data

Patch-based approach benefits improves generalization but does not mean is inmune to overfit-
ting. For this reason we have taking care of generating a diverse dataset combined with data
augmentation.

3.6.1. 3D dataset

We follow a similar procedure to FluidNet paper to generate synthetic data for training: the
velocity field is initialized as a random turbulent field, geometry is randomly placed as obsta-
cles or density inflow, localized input perturbations are added in a procedural and randomized
way. Each simulation includes randomly chosen gravity, density, and vorticity confinement of
varying strengths.

We have reused FluidNet dataset generation source code with some modifications. Instead of
always using 3D models as obstacles, sometime we use the 3D model’s shape to initialize an
inflow density with the same shape. We use a subjset of 1000 NTU 3D Model Database. Each
simulation performs 128 solver steps and stores 64 frames of the sequence (every two steps
density is saved). We compute our simulations different higher voxel resolutions: In particular
we compute:

• 320 sequences at 64 voxel resolution
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Figure 3.12.: Sample frames from the 3D dataset

• 160 sequences at 80 voxel resolution

• 40 sequences at 128 voxel resolution

• 20 sequences at 160 voxel resolution

• 10 sequences at 192 voxel resolution

• 10 sequences at 225 voxel resolution

Simulations at higher voxel resolution are more costly so we reduce the number of simulations.
However there is also more space available for patch extraction.

We combine synthetic data generation with augmentation both at simulation resolution and
patch resolution. We apply random re-scaling into [P 3

e , 3003] voxels to each simulation smoke
sample and make sure density values are normalized in [0-1] range. And after that we sample
multiple random patches that are used for training, those patches are also augmented with ro-
tations and random turbulence by advecting the patches with random velocity. Pe = P ∗

√
2
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Figure 3.13.: Sample frames from the 2D dataset

is the patch extraction size and is slightly bigger than training patch size P so that there are no
discontinuities after rotation used in augmentation, after augmentation the patch is cropped into
a size of P 3. The number of patches extracted from each [P 3

e , 3003] voxels smoke varies with
the smoke resolution: we extract more patches from higher resolution smokes.

3.6.2. 2D dataset

The 2D dataset follows a similar approach to the 3D dataset , the main difference being that the
simulations can be done at higher resolutions. In particular there are:

• 75 sequences at 768x768 pixel resolution

• 100 sequences at 640x640 pixel resolution

• 125 sequences at 512x512 pixel resolution

• 250 sequences at 384x288 pixel resolution

To generate the 2D dataset, on each simulation a random gravity (direction and maginutude)
and vorticy confinement strength is chosen. A simplex noise generator is used to initialize the
density field inside one of the randomly placed silhouettes from the MPEG-7 Core Experiment
CE-Shape-1 dataset (contains 70 shape classes, and for each class there are different silhouettes
to provide intra-class variance). Randomly sized spherical objects are positioned on the domain:
they can act either as density sources, velocity impulse generators, or obstacles. The ammount
of density generated each frame by the sources varies according to a randomized wave shape
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and can have decay. After simulation step 50 frames start being saved every two steps.

As part of augmentation, at each training step an image corresponding to the density of a frame
in a sequence is randomly flipped. Also, after patch extraction at random positions of the frame,
the patches densities can be randomly advected.

3.6.3. Patch queue

On both 2D/3D datasets, patch extraction and augmentation is performed on separate worker
threads each one assigned with a different cuda stream, then the extracted patches are enqueued
so that the main thread can use them for training. Each worker extract patches from multiple
simulation data samples and then shuffle the patches to increase variability on local window of
patches used on training.

3.7. Other approaches

This sections mentions some changes that might be done in the previously explained method
and discuss their effects - some of the alternate configurations will be further discussed in the
results section.

3.7.1. Architectures based on residual layers

Jhonson et. al proposed a popular network architecture [JAL16] that when used with instance-
normalization [UVL17] has been shown to produce high-quality results on image style transfer.
However, most of the (residual) convolution blocks on the network are at the same spatial reso-
lution after which might cause the network to only be able to properly learn features at a single
scale. Adittionally, longer encoder-decoder skip-connections are missing. A model based on
this architecture has been implemented so that it can be compared with UNet architecture, the
only required change to work with transport-based stylizing is to use a Tanh output activation
function.

A more advanced architecture, also based on residual layers, is SRResNet, which has been
used on image super-resolution. Compared to Johnson’ it is comprised of more residual blocks
(increased depth) but each one with fewer filters. On top of that, it has a longer range skip-
connection and uses efficient sub-pixel up-sampling at the end. This architecture can be modi-
fied for transport-based stylizing by also using a Tanh output activation function and by adding
two down-sampling blocks at the beginning (similarly to Johnson’) so that the network can
accept input at its full resolution. See the table A.7 in the appendix for more details.

3.7.2. Slice-based 3D approach

The method section 3.3 describes a simple patch based approach with we have used to create a
first baseline for fast volumetric stylization. However, an alternative slice-based approach has
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also been implemented with limited results

The slice based 3D approach uses a 2D neuronal network to process a 3D volume. It can
be seen as an special form of patch-based approach which allow to process arbitrary depth
volume overcoming memory limitations. First, an axis on which we want to process the volume
is selected, then the network takes as input one of the density slices along that axis, and the
previously processed stylized density slice to produce a 2D style velocity field. The individual
2D velocity slices are then stacked into a volume.

The benefits compared to patch based 3D-network, is that it can take into account stylizing
across the whole density depth whereas patch-based only take into account density that can see
on that patch. Moreover, the perceptual loss can be directly connected to the output 2D result
instead of rendering from multiple sampled camera positions.

However, a limiting problem of this approach is that it requires to rotate the input density field,
perform multiple passes along different axes, and then finally reconstruct the final 3D velocity
field from the multiple 2-component velocity outputs. Limited results have been obtained by
doing two passes along two orthogonal axes and averaging the y components (up-axis) of the
velocity vectors: however more research is required to find a good strategy for combining more
velocity fields, or even combine this approach with the regular-sized 3D patch approach.

3.7.3. Stacked Multi-net model

We tried a 2D multi-scale approach where we stack multiple networks, each one takes the
stylized density field of the previous network and adds stylization according to a different scale
in a Gaussian pyramid. However, each new pass amplifies errors of the previous network and
the final quality is undesirable. For this reason, we decided to focus the rest of the research on
a single-network method.

3.7.4. Multi-view 2D-encoder to 3D-decoder

An approach based on Facebook neuronal volumes has been considered [LSS+19]. The idea
is to use multiple 2D encoders instead of a 3D encoder, each of the encoders would take as
input one rendering of the volume from a different view. This approach would be able to
encode more efficiently, especially if the weights of the multiple encoders are shared. The
downsides are that skip-connections between encoder and decoder are not possible, at least
without additional processing (it could be possible to reconstruct 3D features from multiple
2D features according to an orthographic camera model and then use the 3D features for the
skip connection), and makes the problem harder since as shown in [LSS+19] the output of the
decoder is not completely artifact-free.

A 2D autoencoder that followed their architecture has been implemented. However, we obtained
unsatisfactory 2D results: the network outputs velocities lacking on high-frequency details that
are not of enough quality for transport-based density stylizing. For this reason, further research
has not been continued on this idea. The auto-encoder was hard to tune for satisfactory training,
the use of ELU activation layers was particularly useful to avoid vanishing gradients.
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(a) Dark Matter (b) Ben Giles (c) Peace

(d) Volcano (e) Spirals1.0 (f) Spirals0.5

Figure 4.1.: Style images obtained from different sources
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The collection of style images used to train models in this section is on figure 4.1. Adam opti-
mizer with gradient clipping and a style weight of 1e17 is used in all experiments. The learning
rate is 0.001 for all U-Net experiments. U-Net model uses default original convolutional blocks
comprised of two convolutional layers unless otherwise stated. For the loss graphs, the standard
deviation is shown in a shaded area, and the main colored line represents the mean. The mean
and standard deviation can be computed by considering a moving window over the data saved
at different optimization steps.

4.1. 2D

The test losses are evaluated over a final full-resolution stylized density field after all patches
are assembled. The three reported test-loss scales do correspond to the multi-scale style loss
as described in section 2.1.1, where a three-level Gaussian pyramid is used for the density field
as well as for the style image. Since the end-goal of the patch-based approach is to apply
stylization at high-resolution images, evaluating test-loss at a higher resolution than patch-size
is preferable. The image 4.2 is used for the test-time loss evaluation.

We follow the same approach as [JFA+15] to visualize 2D velocity fields. 2D velocity fields
can be shown as a color map where the direction is represented by hue values and magnitude
by saturation. To keep visualizations comparable, hue values are computed relative to the same
maximum magnitude of 16, so that the same color values in two different images correspond to
velocities of the same magnitude.

Some of the feed-forward results are compared with an iterative TNST method also imple-
mented on PyTorch and which uses the same configuration of VGG layers and weights for the
perceptual loss and also uses Adam optimizer.

On the practical side, on models trained with batch normalization, we have found that slightly
sharper results can be obtained by allowing to keep updating mean and variance with test-data
patches. However, this seems also to generate more unstable results.

All 2D models use first order advection. We did not found significant differences by using
second order advection but results look slightly more sharp on first order advection and more
smooth with second order.

4.1.1. Single-scale U-Net stylization

Using a patch of size 1282 for training, after only 2-3 hours of training, 50k optimization steps,
on a single high-end GPU the model is already able to produce stylizations of good quality. Af-
ter 3-5 hours of training, and 75k optimization steps performed, is difficult to see any additional
visual improvements by doing more iterations. Although it is possible to train with smaller
patch sizes, both train and the test-loss show worse values in that case (see figure 4.3 for 802

patch-size). All 2D U-Net models used on the the following experiments use a convolution
block comprised of two convolutional layers with reflection padding.

Instance normalization on previous works has shown dramatic improvement in image-based
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4.1. 2D

Figure 4.2.: Un-stylized test image used to evaluate the different models in the experiments.

Figure 4.3.: Train and test loss for different patch sizes. A Tanh factor of 0.128 is used for the model
with 802 patch size, and a factor of 0.08 for 1282 patch size. Both models use batch nor-
malization.
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stylizing methods. However, in our results for the U-Net architecture, we only found a slight
improvement in style loss (fig. 4.3) and not any significant visual changes. Out of 4 style images
tested, instance normalization has shown a slightly better test-time loss on three of the styles
(Ben Giles, Dark Matter, and Peace). A detailed description of the 2D architecture used in the
experiment with instance normalization can be found in appendix table A.2.

Compared to iterative TNST, on Wave and Peace the feed-forward approach is able to have
a lower test-time loss on the first level of the pyramid than the iterative TNST method (fig.
4.4(d), and 4.4(c)), however, performs worse in next-levels: This indicates that the feed-forward
approach perform better on smaller-scale shapes but worse on bigger patterns. Surprisingly, the
feed-forward approach can outperform TNST test-loss on the Dark Matter style on two levels
and similar loss on the third level (fig. 4.4(b)): this again can indicate that the CNN is more
suited for style images with textures that have smaller details. In contrast, the CNN is not
able to surpass TNST on any level for Ben Giles which is an image with a lot of medium-
sized flower objects (fig. 4.4(a)). Note also that the TNST configuration was set to the same
parameters as the feed-forward approach to enable a reasonable comparison, however, it might
be possible to obtain better results by fine-tuning the TNST approach: for example, [KAGS19]
TensorFlow implementation uses more pyramid levels with smaller resizing factor, Inception
network instead of VGG-16 and Laplacian gradient descent. Figures 4.4, 4.5, 4.14 and 4.7
show a side by side comparison of TNST and feed-forward methods.
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(a) Ben Giles Losses

(b) Dark Matter Losses
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(c) Peace Losses

(d) Wave Losses

Figure 4.3.: Single-scale loss U-Net feed-forward approaches compared to iterative TNST. U-NetIN
(shown in red) uses instance normalization and U-NetBN (shown in green) uses batch nor-
malization with batch size 4.
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(e) Iterative TNST (1k iterations) (f) Feed-forward

Figure 4.4.: U-Net feed-forward with instance normalization compared to iterative TNST for single-
scale loss Ben Giles style. 16 pixels overlap and velocity interpolation is used in the CNN
result.

(a) Iterative TNST (1k iterations) (b) Feed-forward

Figure 4.5.: U-Net feed-forward with instance normalization compared to iterative TNST for single-
scale loss Dark Matter style. 16 pixels overlap and velocity interpolation is used in the
CNN result.
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(a) Iterative TNST (1k iterations) (b) Feed-forward

Figure 4.6.: U-Net feed-forward with instance normalization compared to iterative TNST for single-
scale loss Peace style. 16 pixels overlap and velocity interpolation is used in the CNN
result.

(a) Iterative TNST (1k iterations) (b) Feed-forward

Figure 4.7.: U-Net feed-forward with instance normalization compared to iterative TNST for single-
scale loss Wave style. 16 pixels overlap and velocity interpolation is used in the CNN
result.
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Patch Stitching

Fig 4.8 shows that the patch-based approach can be applied to a high-resolution 768x768 image
in three different ways: without overlap, with overlap but no interpolation, and combining
overlap and interpolation. Only adding overlap, (and cropping overlapped regions), solves most
of the incoherence between neighboring patches, interpolation then can be successfully applied
to smooth the remaining smaller incoherences. At least 16-pixel overlap between patches needs
to be used to achieve smooth transitions.

Velocity Mask

Figure 4.9 shows that the model stylizes more aggressively when there is no velocity mask loss.
However, it also expands the original shape of the smoke excessively. A model with two-scale
losses and with velocity mask 4.14(b) is able to showcase similar similar style patterns without
compromising to deform the original shape of the smoke.

4.1.2. Multi-scale U-Net stylization

For the multi-scale loss applied a patch during training, better results with more details and
decreased style loss are found by not using a Gaussian pyramid for the density and only using
the Gaussian pyramid in the style image (as in figure 3.2 from method section). A reason for
this behavior is that since the resolution of the patch is already limited, further down-scaling
decreases the ability of the classifier to produce features of sufficient quality due to the lack of
resolution. The idea of [Sne17] of using a Gaussian pyramid was originally intended for high-
resolution images. The Gaussian pyramid is only used on the density patches for figure 4.10,
all the other experiments only use the pyramid for the style image.

For some styles, a slight improvement on higher scales of the test-time pyramid loss can be
found when using a model U-Net+2 with 2-level multi-scale loss, with residual velocities, batch
normalization, and not using a Gaussian pyramid for density patches. In this case, the results
show slightly more aggressive pattern creation (especially for Ben Giles). Without residual
velocities, the results and losses are similar to a single-scale version. However, the style loss at
level zero can show worse values and the results are noisier. Image-based feed-forward stylizing
methods have been able to take multiple-scales into account with more drastic results, however
directly producing pixel values is easier than finding a stylizing velocity field.

An explanation of why using a U-Net+ model based on the residual-velocities results in more
aggressive stylizing, might be reasoned due to the fact that the model can allow for longer range
density transformations. The version that outputs a single velocity field is configured with
a re-scaled Thanh so that the maximum magnitude is 14.48 (

√
2(0.08 ∗ 128)2). In the same

way, each one of the residual velocities in the residual U-Net+ approach that can also be in
the range of 14.48, however since residual velocities add up, the maximum allowed magnitude
of the velocity field is larger: for two scales it would be 28.96. Trying to further increase
maximum allowed magnitude on a single-scale velocity field U-Net approach leads to worse
loss values. Using a residual approach with a single-scale loss is also unsatisfactory because
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(a)

(b)

(c)

Stylized density and velocity for: (a) no-overlap, (b) overlap and crop, (c) overlap and interpolation. The model
used is U-Net with single-scale style loss and reflection padding.

Figure 4.8.: Ben Giles 2D Stitching



4.1. 2D

Figure 4.9.: Results for un-masked velocity for a single-scale model for Ben Giles

lower-resolution residual velocities are mostly ignored by the network.

Even though that by default the 2-scale results are very similar to 1-scale results, the two-
scale residual has a very powerful feature: It is possible to further control the stylizing result
by modifying the re-scaling factor of the Tanh activation functions at test-time. Decreasing
the factor on lower-resolution residuals removes bigger patterns and leaves intact the smaller
high-frequency details (see figures 4.11(a), 4.11(b)). Similarly, decreasing the factor on higher-
resolution residuals allow to obtain smoother bigger patterns (see figures 4.11(c), 4.11(d)). It
is also possible to boost the creation of bigger patterns 4.12(a) by increasing the scale of the
lower-resolution residual, although it is also possible to increase the magnitude of velocities
from 1-scale stylization 4.12(b) it adds excessive noise. The flexibility that the residual U-Net
provides to adjust results at test-time is very useful for an artist.

4.1.3. Architectures Comparison

In this section the proposed U-Net customized model with a single-scale style loss and instance
normalization is compared with:

• Jhonson’ architecture [JAL16] based on residual layers and instance normalization previ-
ously used on image style transfer (uses learning rate 0.001).

• Ulyanov’ multi-scale architecture [ULVL16] previously used on image style transfer with
batch normalization (uses learning rate 0.00001).

• Architecture based on SRResNet and residual layers which is deeper and uses fewer filters
compared to Johnson’ (uses learning rate 0.00001). See table A.7 for architecture details.

Figure 4.13 shows the comparison of the architectures and is noticeable that U-Net with instance
normalization can minimize the style loss very well without sacrificing speed.
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Figure 4.10.: 2-scales with U-Net+2 with residual velocities and using Gaussian pyramid for density
patches following figure 3.1 from method section without modifications.
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4.1. 2D

(a) Ben Giles High-Pass effect. Tanh factors are 0.02
(level 1 pyramid) and 0.08 (level 0 pyramid)

(b) Peace High-Pass effect. Tanh factors are 0.02 (level 1
pyramid) and 0.08 (level 0 pyramid)

(c) Ben Giles Low-Pass effect. Tanh factors are 0.08
(level 1 pyramid) and 0.02 (level 0 pyramid)

(d) Peace Low-Pass effect. Tanh factors are 0.08 (level 1
pyramid) and 0.02 (level 0 pyramid)

(e) Ben Giles two-scales default (f) Peace two-scales default

Figure 4.11.: Adjusting style scales at test-time by changing Tanh factors.
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(a) Boost Dark Matter high-level features. Tanh factors
are 0.12 (level 1 pyramid) and 0.02 (level 0 pyramid)

(b) Amplify single-style-scale U-Net velocities. Tanh
factor is changed from 0.08 to 0.12 at test-time.

Figure 4.12.: Amplify stylization effects

. Results correspond after 8 hours of training where all models have correctly converged.

Figure 4.13.: Comparison of accuracy, speed, and model size for different 2D architectures with a 1-
scale style loss. Models near to the bottom-left corner are better in terms of speed and
stylizing capabilities. Speed correspond to the average to process a patch of size 1282.
The radius of each circle represents the number of parameters of the model. The test-time
style loss correspond to the average over three style scales and two styles images (Ben
Giles and Dark Matter), for details refer to A.1
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(a) Iterative TNST with 2 scales (1k iterations
in total) for Ben Giles

(b) 2-scales feed-forward for Ben Giles (c) 1-scale feed-forward for Ben Giles

(d) Iterative TNST with 2 scales (1k iterations
in total) for Peace

(e) 2-scales feed-forward for Peace (f) 1-scale feed-forward for Peace

(g) Iterative TNST with 2 scales (1k iterations
in total) for Wave

(h) 2-scales feed-forward for Wave (i) 1-scale feed-forward for Wave

Figure 4.14.: Feed-forward with residual velocities U-Net+2 and batch normalization compared to iter-
ative TNST for two-scale style. Single-scale feed-forward result with batch normalization
is also shown. 16 pixels overlap and velocity interpolation is used in the CNN results.

53



4. Results

Training can become unstable on an architecture based on Jhonson’, without gradient clipping
the model fails to converge. In addition, on some styles, such as Dark Matter, if the velocity
mask is disabled it also fails to converge: An explanation for this behavior is that the veloc-
ity mask reduces the space of possible solutions and guides the network on learning non-ill
transformations. Also, using more smooth ELU activation units instead of ReLU can help.

Compared to U-Net which provides good-quality results with the prescribed number of filters
used on image-based processing. Using the prescribed number of filters on the architectures
based on SRResNet64 or Ulyanov8 gives poor results. Better results can be achieved by in-
creasing the number of filters (SRResNet128, Ulyanov64) however this also slows the processing
speed.

4.2. 3D

Due to memory restrictions, patch size is set to 643 on most experiments and training batch-size
is one on all experiments. Since batch-size it is one, it is adequate to use instance normalization,
which we use for all 3D experiments. Note that batch-normalization can be used with batch-
size of one when momentum is activated because because the mean and variance estimates are
computed incrementally, however instance normalization showcases sharper results at test-time.
Depending of the resolution of the style image it is possible to train with higher patch-size, on
some tests it was possible to train at 803 on a 1080 Ti (11GB of dedicated memory) high-
end GPU. All 3D models use replication padding for convolutions. Excluding the dense-block
experiment in section 4.2.7 all other experiments use models with convolution blocks based on
two convolution layers for which a detailed description of the architecture for 1-style-scale and
2-style-scales is found in tables A.4 and A.5.

For the velocity visualization, one slice along depth dimension is used and only x and y vector
components are considered for the color-map. Note that since on 3D velocity magnitudes vary
more from style to style, a different limit has been used for each style. The mapped velocity for
the same style corresponds across different models and can be directly used for comparison.

The test-loss at each step is evaluated by taking a random patch on the last frame of the "smoke
gun" simulation shown in figure 4.15. The same frame is used to compare models.

On many of the examples we indicate if the patches are aligned to the top of the domain, this
allows to compare how the patch behaves on the borders. For the final rendered results we use
padding at the beginning and end of the domain to avoid artifacts (see fig. 4.23 to see how
border artifacts are avoided). We use the same minimal orthogonal renderer used in training
to show many of the figures results (those with black-background) and Mantra for final results
with more complex lighting configurations.

4.2.1. Advection Order

Compared to 2D, we have found the advection order to play a more important role for 3D
quality results. When first order advection is used for training, the final velocity field lacks
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Figure 4.15.: Original Smoke gun frame without stylization

detail on some areas: For example on fig. 4.16(a), with first order advection the network learns
to harshly push the densities towards the center of the density field leaving an empty area where
originally there were densities. In comparison, with second order Maccormak advection 4.16(b)
the velocity field looks more turbulent and can generate more correct details on the same region.
In addition, it is possible to train on second order advection and use first order advection at
test-time, this approach still gives preferable results than using first order at training stage.
When using first-order at training stage and second-order at test-time details are smooth out
excessively and lost.

4.2.2. Camera sampling

Camera parameters were tuned on experiments made on a smaller data-set (several smoke gun
sequences) without augmentation and with random patch extraction. We found sharper results
when visualizing the stylized density field in Houdini when using many orthogonal cameras (we
are able to configure up-to 16 simultaneous views at each training step without running out of
memory) combined with position sampling at each optimization step 4.17(b). View-sampling
results in sharper results. The same configuration was used for the rest of the experiments on
the large-dataset.

4.2.3. Style Scales and Velocity Masking

Spirals

Comparing a U-Net1 model without residual velocities and with a single-scale style loss to a
model with two-scale loss U-Net+2, the most differences can be found with Spirals style, which
has also been the most difficult style to tune to obtain good results.
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(a) Results for model trained with first order advection

(b) Results for model trained with second order advection

Figure 4.16.: Models trained for Volcano style and different advection configurations. Interpolation at
final velocities between 32-voxel patches overlap is performed. Note that the results cor-
respond to 24 hours of training.
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(a) 16 fixed views (b) 16 views sampled at each step

Figure 4.17.: Camera sampling comparison for small data-set and Dark Matter style. Both models were
trained for the same number of steps (15k). Visualization of densities is done with per-
spective camera on Houdini.

When training Spirals1.0 with patch-size 803 the network learn to produce the biggest sized
patterns, for this case a single-scale model has showcased difficulty to learn patterns and the
two-scale model is prone to showcase border artifacts. When Spirals1.0 is trained at path-size
643 both models are able to produce slightly smaller shapes. In this case, both using a two-scale
model and disabling mask can help to show more clear and sharp patterns, however, using a
single-scale loss with train-time mask showcases the best temporal coherence. With Spirals0.5

style image the smallest patterns are produced however even when mask is used both single-
scale and two-scale showcase similar temporal instabilities and further temporal post-processing
is required.

For Spirals0.5 style the test-loss show similar values for level 0 but U-Net+2 is able to showcase
significant decrease on level 1 loss compared to U-Net1 both when train-time velocity mask is
activated or deactivated (see figure 4.18(a). Trying a U-Net model without residual velocities
and 2 style-losses the model is not able to converge due to training instabilities, trying to in-
crease maximum allowed velocity (tanh factor 0.256) on a single-scale loss model results on
worse loss values (figure 4.19).

When spiral style is trained with two scale loss U-Net+2 the network is able generate velocities
that produce bolder changes than when trained with a single-scale loss U-Net1 (figure 4.18). If
the stylization results are too harsh, the stylization strength can easily be controlled by reducing
stylization velocity magnitudes with a element-wise multiplication with a strength factor. A
more advanced control is possible by changing Tanh factors for each scale at test-time (figure
4.21(f)). When doing temporal velocity post-processing the results are already being smoothed
and it might be preferable to choose the sharpest configuration.
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Dark Matter and Volcano

For Dark Matter and Volcano style, the U-Net+2 is also able to showcase greater decrease on
level 1 pyramid test-loss (on volcano only if mask is deactivated) - see right hand side of fig-
ures 4.18(b) and 4.18(c). Loss values for level 0 are similar, or slightly worse when mask is
deactivated. However, because the styles are based on smaller patterns, the fine-grained results
that the U-Net1 model is able to produce are visually preferable. On volcano style the use
of a velocity-mask at train-time combined with a single-scale loss shows the best results and
loss values (left-hand side of 4.18(c)) for scale 0. For Dark Matter the best quality is achieved
by only applying the velocity-mask at a post-processing stage, the model that learns the mask
at training-time showcases artifacts at the beginning of the "smoke gun" sequence (see figure
4.24).

4.2.4. Temporal coherence

Some of the models can showcase temporal incoherence more than others. By tuning train-
ing patch-size, style image resolution, and the mask it was possible to stylize one sequence of
Spirals without any temporal problems. In cases of Spirals where there is temporal inconsis-
tencies, they can be significantly reduced by smoothing velocities on a frame-window (method
explained on section 3.4). Figure 4.26(b) show how with temporal smoothness post-processing
there is less undesired variance in the results of consecutive frames

Dark matter models generally don’t showcase any temporal incoherence but when trained with-
out mask and the velocity-mask is applied at a post-processing step there are some minor in-
consistencies near the surface of the smoke in the direction it is moving. In volcano temporal
artifacts are more apparent, without any post-processing the flickering is noticeable, see vol-
cano_window0.mp4 on supplementary material. In this case a post-processing window of 3 or
5 can reduce flickering, see volcano_window3.mp4 and volcano_window5.mp4.

4.2.5. Performance

Table 4.1 show that with a high-end GPU, the method need less than 40 minutes to processes
the 120 frames from the "smoke gun" sequence, taking below 20 seconds to process all patches
on a frame. In addition, if temporal smoothing is required it can take at least 7.6 seconds more
per frame to temporally smooth the velocities (see table 4.2). An iterative TNST approach
needs between 10-20 mins per frame for a volume of the same size - our method is two orders
of magnitude faster. Our method can even be run on a lower-end laptop GPU (see table 4.3)
needing significantly less time to process a high-resolution frame than iterative TNST.

4.2.6. Stitching based on Feature Interpolation

The results on figures 4.27 and 4.28 show that is possible to efficiently fix most of the spatial in-
coherence’s using a feature interpolation approach without any overlap. The number of patches
required to cover the volume is smaller and it is possible to process the volume in less time
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(a) Spirals0.5

(b) Dark Matter

(c) Volcano

Figure 4.18.: Loss values for mask and multi-scale 3D style options after 48 hours of training
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Figure 4.19.: Train-time Tanh factors for Volcano style

(a) single-scale with velocity-mask (b) two-scale with velocity-mask

Figure 4.20.: 1-scale U-Net1 and 2-scale U-Net+2 results and masking configurations after 48 hours of
training for Spirals0.5. Velocity-masking is learned at training time so that the network can
directly produce masked results. Patch border is aligned to the top of the domain so border
artifacts can be visible.
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(a) single-scale with post-processing
mask (no mask used for training)

(b) single-scale no-mask (c) two-scale no-mask

(d) single-scale with learned velocity-
mask

(e) two-scale with learned velocity-
mask

(f) two-scale with learned velocity-
mask and test-time modified Tanh
factors (0.064, 0.128)

Figure 4.21.: 1-scale U-Net1 and 2-scale U-Net+2 results and masking configurations after 48 hours of
training for Dark Matter. Velocity-masking is learned at training time so that the network
can directly produce masked results. Patch border is aligned to the top of the domain so
border artifacts can be visible.
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(a) single-scale no velocity-mask
at train-time, post-processing
velocity-mask

(b) single-scale no-mask (c) two-scale no-mask

(d) single-scale with trained velocity-
mask

(e) two-scale with trained velocity-
mask

(f) two-scale with velocity-mask and
test-time modified Tanh factors
(0.128, 0.032)

Figure 4.22.: 1-scale U-Net1 and 2-scale U-Net+2 results and masking configurations after 48 hours of
training for Dark Matter. Velocity-masking is learned at training time so that the network
can directly produce masked results. Patch border is aligned to the top of the domain so
border artifacts can be visible.

62



4.2. 3D

(a) Patches aligned with top of the domain (b) Density with 20 voxels of padding at the top

Figure 4.23.: Using 20 of padding at the beginning and at the end of up-axis of the density field helps to
avoid artifacts compared to adding 40 only at the bottom.

(a) With learned velocity-mask (b) Velocity-mask only at test-time

Figure 4.24.: Comparison of frame 52 of the sequence with masking options for 1-scale
Dark Matter model. . See dark_matter_x1scale_learned_mask.mp4 (a) and
dark_matter_x1scale_post_mask.mp4 (b) on the supplementary material for the full se-
quence.

120 Frames sequence Total Per Frame Per Call

Process Entire Volume 37.19 min 18.59 s 18.59 s

Split into patches 1.65 min 0.82 s 0.82 s

Feed-forward Model 24.94 min 12.47 s 191.86 ms

Stitch Patches 4.53 min 2.26 s 2.26 s

Masking 3 min 1.5 s 1.5 s

Table 4.1.: Speed of feed-forward approach on a volume of 200x300x200 with 32 voxel overlap. Each
feed-forward call takes a batch of 5x803 patches). Values are correspond to the average of
three runs. Patch stitching is performed with velocity interpolation on overlaped regions.
Tested on GTX 1080 Ti.
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(a) single-scale no-mask (b) two-scale no-mask

(c) single-scale with velocity-mask (d) two-scale with velocity-mask

Figure 4.25.: 1-scale U-Net1 and 2-scale U-Net+2 results and masking configurations after 48 hours of
training for Dark Matter. Velocity-masking is learned at training time so that the network
can directly produce masked results. Patch border is aligned to the top of the domain so
border artifacts can be visible.64
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(a) Results without any post-processing

(b) After temporal post-processing

(c) No post-processing zoom (d) Smoothed zoom

Figure 4.26.: Effect of temporal post-processing for a U-Net+2 model trained on Spirals style with patch
size of 803. Three consecutive frames taken from the video spirals_tempo_vs.mp4 supplied
in the supplementary material are shown. A window of size three is used for smoothing.
Model trained and tested with patch size of 803. Stitching performed with velocity in-
terpolation on a overlap of 32 voxels. During training a mask loss was activated, and no
additional mask is used at post-processing.
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120 Frames Total Per Frame

Window size 5 25.5 min 12.8 s

Window size 3 15.2 min 7.6 s

Table 4.2.: Speed of temporal post-processing measured on a volume of 200x300x200 for a sequence of
120 frames at different window sizes. Tested on GTX 1080 Ti

Volume 200x300x200 32 overlap and linear inter-
polation of velocities

No overlap and feature in-
terpolation

Total seconds 133.23 54.83

Total seconds for white cells 23.42

Total seconds for black cells 28.33

Number of patches 96 36

Average ms per feed-forward call 1269.09 1303.05

Table 4.3.: Speed of two interpolation methods for a density field of 200x300x200 with a U-Net+2

model. Convolution blocks are comprised of two convolutions. Tested on GTX 960M.

(see table 4.3). Since final velocities are not interpolated the results are also sharper. However,
some patch to patch transitions can be noticeable and some of the patches whose features are
interpolated (second pass) look less stylized (at the bottom and top-left part of the densities at
the figure 4.27).

4.2.7. Dense Blocks

Models based on dense blocks have reduced number of filters per convolution (8 times less) and
increased number of convolution layers. Although these models can be around x4 times faster
than models based on convolutional blocks with two convolutional layers with more filters,
they also showcase significantly worse style loss (figure 4.29). The quality of the results also
is worse, specially on the volcano style (figure 4.30(b)). On dark matter the quality is more
reasonable, in this case using dense blocks is a valid alternative that trades off some quality for
higher speed and reduced model size (can be stored in 2MB compared to 150MB of U-Net with
default number of filters).

4.2.8. Slice-based approach

It is possible to generate stylization by processing the volume on a single axis (for example
the front view - see figure 4.31), however the details are lost when rotating the camera. The
velocities resultant from processing the volume from two orthogonal axes (X and Z) can be
combined by averaging y component of the velocities (figure 4.32), however the results lose
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Figure 4.27.: Comparison of (32-voxel) overlap and velocity interpolation (second column) against fea-
ture interpolation without overlap (third column) for Spirals0.5. The first column has is the
raw output without stitching and without any overlap. Model was trained for 24 hours on
643 patch size, test-time patch size is 803 .
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(a) Velocities without overlap and
without interpolation

(b) Velocities without overlap and
with feature interpolation

(c) Velocities without overlap, with
feature interpolation and with
post-processing mask

(d) Densities advected with feature interpolation masked-Velocities

Figure 4.28.: Feature interpolation on Dark Matter (1-scale and post-processing mask)
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(a) Spirals1.0 (both models without train-time mask)

(b) Dark Matter

(c) Volcano

Figure 4.29.: Loss comparison for U-Net with dense blocks and reduced number of filters

69



4. Results

(a) Dark Matter (b) Volcano

Figure 4.30.: Stylized results for U-Net with dense blocks and reduced number of filters
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Figure 4.31.: Slice-based approach for Ben Giles. The render-view is aligned with the slicing-axis so
that features are sharp. The volume is of 200x300x200 and has been processed in sub-
volumes of 200x80x80 without overlap

some detail and the details are still not sharp when rotating the volume. In addition, the slice
based approach generates smaller patterns.

4.2.9. Final Rendered Sequences

The most promising configurations have been used to generate an stylized smoke that then has
been rendered on Houdini with Mantra renderer. In particular we have rendered "smoke gun"
sequence for:

• Figure 4.33: Volcano with 1-scale style loss, velocity mask learned at training, and a
window of five frames for temporal coherence.

• Figure 4.35 Dark Matter with 1-scale style loss with velocity mask at post-processing and
no additional temporal post-processing. For this case an additional render is performed
with increased smoke transparency (see figure 4.36).

• Figure 4.34 Spirals1.0 with 1-scale style loss, velocity mask learned at training, and no
additional temporal post-processing

The three models have been trained with patch size 643, then at test-time a patch size of 803

is used with 32 voxel overlap. The full video sequences can be found on the supplemen-
tal material: mantra_volcano.mp4, mantra_dm.mp4, mantra_dm_moretransparent.mp4, and
mantra_spirals.mp4. In addition mantra_gt.mp4 contains the rendered original density field
without any stylization (figure 4.37).

In addition we add detail and render a "dragon" sequence by up-sampling a dull low-resolution
simulation of 32x120x80 voxels to 120x450x300 and processing with the patch-based ap-
proach with 803 patch-size and 40 voxels overlap for Spirals1.0 and Dark Matter 1-scale-style.
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(a) Using only velocities from Z-axis pass v̂z

(b) Using only velocities from X-axis pass v̂x

(c) Combine v̂x and v̂z

Figure 4.32.: Slice-based approach for Peace with two passes and then naively combining the velocities
for a 803 patch
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The full sequences can be found in supplementary material files: dragon_spirals_mantra.mp4,
dragon_dm_mantra.mp4, and dragon_gt_mantra.mp4 (unstylized). The last frame of the se-
quences is on the title-page, the frame 10 of the simulation is on figure 4.38.

4.2.10. Summary

It has been shown (on 2D) that following an architecture with a traditional bottleneck shape
combined with skip-connections can be fast and yield quality results, surpassing architectures
with residual layers. 3D stylizing is possible with a simple differentiable renderer and view
sampling. The results show that adjusting velocity-mask, training patch-size, Tanh factors, and
style image resolution, is possible to control shape and behavior of style patterns to be without
spatial artifacts and often without any strong temporal incoherences as part of a patch-based
approach that can process arbitrarily sized density fields. In cases that temporal incoherences
are present, they can be largely removed with a fast post-processing method. Even though it is
possible to a small degree to target and decrease more than one style scale loss on a more com-
plex approach with residual velocities, it also often leads to more noisy, and prone to artifacts,
results.
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4. Results

Figure 4.33.: Mantra render of "Smoke Gun" with Volcano style
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Figure 4.34.: Mantra render of "Smoke Gun" with Spirals1.0 style
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4. Results

Figure 4.35.: Mantra render of "Smoke Gun" with Dark Matter style
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4.2. 3D

Figure 4.36.: Mantra render of "Smoke Gun" with Dark Matter style and increased transparency
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Figure 4.37.: Mantra render of "Smoke Gun" without any stylization

78



4.2. 3D

Figure 4.38.: Mantra renders of frame 10 of "Dragon" sequence: unstylized (top), Dark Matter (middle),
Spirals (Bottom)
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4. Results

Figure 4.39.: Last frame of "Dragon" sequence with tiny renderer for Dark Matter
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4.2. 3D

Figure 4.40.: Last frame of "Dragon" sequence with tiny renderer for Spirals
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5
Conclusion and Outlook

This thesis work has been able to establish a baseline Pytorch implementation that is capable
of stylizing of 3D fluids on a fast and spatially scalable way. Compared to iterative optimiza-
tion neuronal transport method TNST [KAGS19] a stylization based on convolutional neuronal
networks DCTNST exhibits a greater degree of both spatial and temporal coherence with less
noise/variability between frames, facts that can be used to define a simple patch-based approach
based on overlaps that is two orders of magnitudes faster. However, there is a set of limitations
that needs to be mentioned. In the future work section, there is a discussion of a list of additions
or changes that could solve some of the limitations or improve parts of this baseline.

The contributions of this work are:

• First feed-forward method for 3D density stylization

• First scalable approach for arbitrarily sized 3D density stylizing

• First fast temporally coherent 3D density stylization. This is possible due to inherent
transport-based CNN temporal coherence and fast velocity smoothing post-process per-
formed in a single pass.

5.1. Limitations

One important limitation of our architecture is that a separate model needs to be trained for each
style image. In practice, this can be mitigated by providing artists with a diverse collection of
pre-trained models. However, this still limits the freedom on which artists could experiment
and tweak new style images to obtain different results.

Moreover, the tiling method used in this work needs to be carefully tuned with the CNN to avoid
artifacts, otherwise, some stitching traces and temporal incoherences can be visible. There is
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5. Conclusion and Outlook

a relationship between the scale of the style patterns from the style image and how likely are
stitch artifacts to appear. The method presented in this thesis is more suitable for more fine-
grain detail styles. Stitch artifacts can be reduced by increasing test-time patch size and overlap
size however this increases computational cost. Future work could focus on increasing the
robustness of the patch-based approach.

5.2. Future work

• Arbitrary Style Transfer. In our pipeline, the same single style image is used at training
time as an input to a pre-trained image classifier. To allow for arbitrary style transfer the
feed-forward stylizing CNN should also take as input the style image so that it can vary its
output depending on the input image style. This is more challenging for 3D CNN because
the solution needs to find a strategy to combine 3D features from the density input and
2D features from the input target-style image.

• Improved feature interpolation for stitching. Feature interpolation shows promising re-
sults (see figures 4.27 and 4.28), however transitions between patches are still slightly
noticeable. Future work could focus on improving the approach explained in section
3.3.2.

• Neighbor Patch Priors. On our work stitching is only performed at post-processing. How-
ever, further research could be done to find a more advanced learning scheme where a
patch receives as additional inputs the velocity fields of its neighbors. The additional in-
puts can be used to condition the output velocity field so that it has a smooth transition
with neighbors’ velocity fields. In particular, a checkerboard idea could be implemented
so that white cells are processed on a first pass and then black cells can be conditioned to
neighbor white cells. This approach could eliminate or reduce the need for overlap, and
increase the robustness of the patch-based approach.

• Temporal Priors. The network could take as part of the input previously stylized densities
and directly minimize a temporal loss. This could reduce the need of temporal post-
processing which can smooth-out part of the details.

• Helmholtz decomposition. The implemented CNN models directly output a stylizing ve-
locity field but further research could focus on testing how well the neuronal network
learns to instead output two separate volume fields that correspond to the incompressible
and irrotational parts of the stylizing velocity field, following a Helmholtz decomposition.
By doing so, the user can directly tweak the curl and divergence of the stylizing field and
have additional control over the results at test-time.

• Semantic style transfer. This work has focused on matching the style target defined on
an external image. However, instead of a style image, is possible to directly provide an
array of feature maps from layers of the pre-trained network. Then a content loss based
on MSE can be used to match the provided feature maps to the responses from the output
density field. White noise can be used to the input of the pre-trained network to generate
a set of feature maps that the user can visualize to directly choose patterns from.
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5.2. Future work

• Adversarial Training. Using an adversarial loss has shown great results for super-resolution.
Style transfer can be interpreted as a special type of super-resolution where the wanted
details must match those from style image. For this reason, combining the perceptual loss
with adversarial training could lead to more detailed results. [BAKS19] has shown using
an approach based on GAN is able to generate impressively detailed fluid velocity fields,
even though the network only mimics details which are non-physically based, on style
transfer it is not necessary to be physically accurate. A future line on work could focus on
adversarial training. However, it is difficult to extend a global-statistics style loss based
on adversarial networks because the adversary needs to be trained to distinguish between
stylized volumes from the generator and style exemplars: we are lacking reference ground
truth of stylized volumes, unless those are generated synthetically, for example with the
slower iterative optimization method TNST [KAGS19]. It needs to be taken into account
that some of the previous GAN 2D style transfer approaches are based on collection style
transfer which is less flexible because it can not stylize according to individual images.
In addition, adversarial networks can be unstable to train. A feasible idea for a GAN ap-
proach is to randomly extract and compare smaller neuronal patches (from the pre-trained
image classifier) both from stylized density and from the style target.

• Super-resolution. In addition, the output and input of our model have the same spatial
resolution. In the super-resolution field, previous 2D work has shown good results com-
bining perceptual-loss with adversarial training, and 3D work [XFCT18] using discrimi-
nator that directly compares density fields. However, there is no research that is based on
comparing neuronal features for 3D density fields as part of a perceptual-loss for super-
resolution. Our work shows how perceptual-loss can be propagated to a 3D volume by
rendering the volume from different views. Additional research could focus on how to
use the perceptual-loss, and possibly combine it with adversarial training, to perform
3D density up-scaling and compare the quality to previous 3D density super-resolution
works.

• Progressive Growing CNN Training. A strategy based on progressively adding and train-
ing layers to the CNN could be adopted, this strategy has been especially successful in
previous adversarial super-resolution works.

• Even faster style transfer and super-resolution. Similarly, additional research can look
into how to perform more efficient stylization by combining up-sampling and style trans-
fer: this way the input density field can be at a low-resolution version. An extension
of sub-pixel up-sampling to 3D could be used to also perform convolutions at a lower
spatial-resolution on the decoder. By avoiding placing convolution layers at the highest
spatial resolution (output resolution) the network can have further processing speed and
possibly give more quality results because a higher number of filters can be placed at the
convolution blocks.
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A
Appendix

A.1. Additional 2D results

For the additional results a overlap of 32 pixels is used with cropping, there is no velocity
interpolation on the overlapped regions and thus the result show the inherent spatial coherence
that can be introduced just with overlapping. Note also that the color mapping function uses a
different scale on each image.
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A. Appendix

Model Parameters Style Image Level 0 Level 1 Level 2

UNetIN 13.4 Ben Giles 3.36 4.85 6.06

UNetIN 13.4 Dark Matter 2.65 4.19 8.34

Jhonson’128 1.7 Ben Giles 3.7 5.2 10.5

Jhonson’128 1.7 Dark Matter 3.06 4.52 8.91

Jhonson’256 6.7 Ben Giles 3.66 5.03 9.92

Jhonson’256 6.7 Dark Matter 2.93 4.65 9.07

Jhonson’384 14.9 Ben Giles 3.92 5.27 10.6

Jhonson’384 14.9 Dark Matter 2.81 4.26 8.52

SRresNet64 1.5 Ben Giles 4.02 5.37 10.84

SRresNet64 1.5 Dark Matter 3.9 5.45 10

SRresNet128 6.1 Ben Giles 3.61 4.97 9.86

SRresNet128 6.1 Dark Matter 3.42 4.59 8.97

SRresNet192 13.8 Ben Giles 3.57 4.87 9.56

SRresNet192 13.8 Dark Matter 3.21 4.19 8.1

Ulyanov64 4.4 Ben Giles 4.17 6.08 12.1

Ulyanov64 4.4 Dark Matter 3.31 5.35 10.45

Table A.1.: Test-time multi-scale style loss values (*1e12) for a gaussian pyramid of three levels for
different 2D architectures. Parameters values are in millions. UNet model uses instance
normalization. All models were trained with a single-scale style loss .
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A.1. Additional 2D results

Figure A.1.: SRResNet192 architecture results for Ben Giles style

Figure A.2.: SRResNet192 architecture results for Dark Matter
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A. Appendix

Figure A.3.: Jhonson’384 architecture results for Ben Giles style

Figure A.4.: Jhonson’384 architecture results for Dark Matter
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A.1. Additional 2D results

Figure A.5.: Ulyanov64 architecture results for Ben Giles style

Figure A.6.: Ulyanov64 architecture results for Dark Matter
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A.2. Architectures Details

Table A.2.: Customized 2D U-Net architecture with Instance Normalization

Input Block/Name Layer

(d) (0) DoubleConv

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=1, out_channels=64, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=64, out_channels=64, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(0) (1) Down1 MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

(1) (2) DoubleConv

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=64, out_channels=128, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=128, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=128, out_channels=128, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=128, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(2) (3) Down2 MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

(3) (4) DoubleConv

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=128, out_channels=256, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=256, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=256, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)
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(4) (5) Down3 MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

(5) (6) DoubleConv

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=256, out_channels=512, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=512, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=512, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(6) (7) Down4 MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

(7) (8) DoubleConv

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=512, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=512, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(8) (9) Up1 Upsample(scale_factor=2.0, mode=bilinear)

(5), (9) (10) DoubleConv

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=1024, out_channels=256, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=256, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=256, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(10) (11) Up2 Upsample(scale_factor=2.0, mode=bilinear)
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(3), (11) (12) DoubleConv

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=512, out_channels=128, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=128, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=128, out_channels=128, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=128, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(12) (13) Up3 Upsample(scale_factor=2.0, mode=bilinear)

(1), (13) (14) DoubleConv

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=256, out_channels=64, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=64, out_channels=64, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(14) (15) Up4 Upsample(scale_factor=2.0, mode=bilinear)

(0), (15) (16) DoubleConv

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=128, out_channels=64, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=64, out_channels=64, kernel_size=(3, 3), stride=1)

InstanceNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(16) (17) Output0
Conv2d(in_channels=64, out_channels=2, kernel_size=(1, 1), stride=1)

Tanh(scale=factor_0)
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Table A.3.: Additional/Modified layers required for residual velocity computation on a customized 2D
U-Net+2 architecture with Instance Normalization

Input Block/Name Layer

(14) (18) Output1

Conv2d(in_channels=64, out_channels=2, kernel_size=(1, 1), stride=1)

Tanh(scale=factor_1)

Upsample(scale_factor=2.0, mode=bilinear)

(16),(18) (17) Output0
Conv2d(in_channels=64, out_channels=2, kernel_size=(1, 1), stride=1)

Tanh(scale=factor_0)

Table A.4.: Customized 3D U-Net architecture with Instance Normalization

Input Block/Name Layer

(d) (0) DoubleConv

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=1, out_channels=64, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=64, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=64, out_channels=64, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=64, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(0) (1) Down1 MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

(1) (2) DoubleConv

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=64, out_channels=128, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=128, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=128, out_channels=128, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=128, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(2) (3) Down2 MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
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(3) (4) DoubleConv

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=128, out_channels=356, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=256, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=256, out_channels=356, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=256, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(4) (5) Down3 MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

(5) (6) DoubleConv

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=256, out_channels=512, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=512, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=512, out_channels=512, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=512, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(6) (7) Down4 MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

(7) (8) DoubleConv

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=512, out_channels=512, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=512, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=512, out_channels=512, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=512, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(8) (9) Up1 Upsample(scale_factor=2.0, mode=trilinear)
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(5), (9) (10) DoubleConv

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=1024, out_channels=356, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=256, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=256, out_channels=356, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=256, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(10) (11) Up2 Upsample(scale_factor=2.0, mode=trilinear)

(3), (11) (12) DoubleConv

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=512, out_channels=128, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=128, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=128, out_channels=128, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=128, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(12) (13) Up3 Upsample(scale_factor=2.0, mode=trilinear)

(1), (13) (14) DoubleConv

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=256, out_channels=64, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=64, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=64, out_channels=64, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=64, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(14) (15) Up4 Upsample(scale_factor=2.0, mode=trilinear)
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(0), (15) (16) DoubleConv

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=128, out_channels=64, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=64, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReplicationPad3d((1, 1, 1, 1, 1, 1))

Conv3d(in_channels=64, out_channels=64, kernel_size=(3, 3, 3), stride=1)

InstanceNorm3d(num_features=64, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

(16) (17) Output0
Conv3d(in_channels=64, out_channels=3, kernel_size=(1, 1, 1), stride=1)

Tanh(scale=factor_0)

Table A.5.: Additional/Modified layers required for residual velocity computation on a customized 3D
U-Net+2 architecture with Instance Normalization

Input Block/Name Layer

(14) (18) Output1

Conv3d(in_channels=64, out_channels=3, kernel_size=(1, 1, 1), stride=1)

Tanh(scale=factor_1)

Upsample(scale_factor=2.0, mode=trilinear)

(16),(18) (17) Output0
Conv3d(in_channels=64, out_channels=3, kernel_size=(1, 1, 1), stride=1)

Tanh(scale=factor_0)

Table A.6.: Layers for the 2D residual block such as y = f(x) + x for SRResNet192

Input Index Layer

(x) (0) ZeroPad2d((1, 1, 1, 1))

(0) (1) Conv2d(in_channels=192, out_channels=192, kernel_size=(3, 3), stride=1, bias=False)

(1) (2) BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)

(2) (3) ReLU(inplace=True)

(3) (4) ZeroPad2d((1, 1, 1, 1))

(4) (5) Conv2d(in_channels=192, out_channels=192, kernel_size=(3, 3), stride=1, bias=False)

(5) (6) BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)

98



A.2. Architectures Details

(x),(6) (7) Add

Table A.7.: Layers for customized SRResNet192

Input Block/Name Layer

(d) (0) ConvBlock

ZeroPad2d((1, 1, 1, 1))

Conv2d(in_channels=1, out_channels=96, kernel_size=(3, 3), stride=(1, 1))

ReLU(inplace=True)

(0) (1) Down1

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=96, out_channels=192, kernel_size=(3, 3), stride=2)

ReLU(inplace=True)

(1) (2) Down2

ReflectionPad2d((1, 1, 1, 1))

Conv2d(in_channels=192, out_channels=192, kernel_size=(3, 3), stride=2)

ReLU(inplace=True)

(2) (3) ConvBlock

ZeroPad2d((1, 1, 1, 1))

Conv2d(in_channels=192, out_channels=192, kernel_size=(3, 3), stride=(1, 1))

ReLU(inplace=True)

(3) (4) 15x ResBlock See table A.6

(4) (5) ConvBlock

ZeroPad2d((1, 1, 1, 1))

Conv2d(in_channels=192, out_channels=192, kernel_size=(3, 3), stride=(1, 1))

BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True)

(3),(5) (6) Skip-Connection Add

(6) (7) SubPixelConv

ZeroPad2d((1, 1, 1, 1))

Conv2d(in_channels=192, out_channels=768,

kernel_size=(3, 3), stride=1, bias=False)

PixelShuffle(upscale_factor=2)

ReLU(inplace=True)
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(7) (8) SubPixelConv

ZeroPad2d((1, 1, 1, 1))

Conv2d(in_channels=192, out_channels=768,

kernel_size=(3, 3), stride=1, bias=False)

PixelShuffle(upscale_factor=2)

ReLU(inplace=True)

(8) (9) Output

ZeroPad2d((1, 1, 1, 1))

Conv2d(in_channels=192, out_channels=2, kernel_size=(3, 3), stride=1)

Tanh()*factor_0
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